28 research outputs found

    CONSTANS is a photoperiod regulated activator of flowering in sorghum

    Get PDF
    BACKGROUND: Sorghum genotypes used for grain production in temperate regions are photoperiod insensitive and flower early avoiding adverse environments during the reproductive phase. In contrast, energy sorghum hybrids are highly photoperiod sensitive with extended vegetative phases in long days, resulting in enhanced biomass accumulation. SbPRR37 and SbGHD7 contribute to photoperiod sensitivity in sorghum by repressing expression of SbEHD1 and FT-like genes, thereby delaying flowering in long days with minimal influence in short days (PNAS_108:16469-16474, 2011; Plant Genome_in press, 2014). The GIGANTEA (GI)-CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway regulates flowering time in Arabidopsis and the grasses (J Exp Bot_62:2453-2463, 2011). In long day flowering plants, such as Arabidopsis and barley, CONSTANS activates FT expression and flowering in long days. In rice, a short day flowering plant, Hd1, the ortholog of CONSTANS, activates flowering in short days and represses flowering in long days. RESULTS: Quantitative trait loci (QTL) that modify flowering time in sorghum were identified by screening Recombinant Inbred Lines (RILs) derived from BTx642 and Tx7000 in long days, short days, and under field conditions. Analysis of the flowering time QTL on SBI-10 revealed that BTx642 encodes a recessive CONSTANS allele containing a His106Tyr substitution in B-box 2 known to inactivate CONSTANS in Arabidopsis thaliana. Genetic analysis characterized sorghum CONSTANS as a floral activator that promotes flowering by inducing the expression of EARLY HEADING DATE 1 (SbEHD1) and sorghum orthologs of the maize FT genes ZCN8 (SbCN8) and ZCN12 (SbCN12). The floral repressor PSEUDORESPONSE REGULATOR PROTEIN 37 (PRR37) inhibits sorghum CONSTANS activity and flowering in long days. CONCLUSION: Sorghum CONSTANS is an activator of flowering that is repressed post-transcriptionally in long days by the floral inhibitor PRR37, contributing to photoperiod sensitive flowering in Sorghum bicolor, a short day plant

    The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.

    Get PDF
    Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement

    Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum

    Get PDF
    Optimal flowering time is critical to the success of modern agriculture. Sorghum is a short-day tropical species that exhibits substantial photoperiod sensitivity and delayed flowering in long days. Genotypes with reduced photoperiod sensitivity enabled sorghum's utilization as a grain crop in temperate zones worldwide. In the present study, Ma(1), the major repressor of sorghum flowering in long days, was identified as the pseudoresponse regulator protein 37 (PRR37) through positional cloning and analysis of SbPRR37 alleles that modulate flowering time in grain and energy sorghum. Several allelic variants of SbPRR37 were identified in early flowering grain sorghum germplasm that contain unique loss-of-function mutations. We show that in long days SbPRR37 activates expression of the floral inhibitor CONSTANS and represses expression of the floral activators Early Heading Date 1, FLOWERING LOCUS T, Zea mays CENTRORADIALIS 8, and floral induction. Expression of SbPRR37 is light dependent and regulated by the circadian clock, with peaks of RNA abundance in the morning and evening in long days. In short days, the evening-phase expression of SbPRR37 does not occur due to darkness, allowing sorghum to flower in this photoperiod. This study provides insight into an external coincidence mechanism of photoperiodic regulation of flowering time mediated by PRR37 in the short-day grass sorghum and identifies important alleles of SbPRR37 that are critical for the utilization of this tropical grass in temperate zone grain and bioenergy production

    Correlation of apoproteins with the genes of the major chlorophyll a/b binding protein of photosystem II in Arabidopsis thaliana Confirmation for the presence of a third member of the LHC IIb gene family

    Get PDF
    AbstractThe major light-harvesting complex in higher plants is LHC IIb. The LHC IIb of Arabidopsis thaliana contains 2 pigment-binding apoproteins of 28 and 25 kDa. To determine the relationship between them and the LHC IIb gene family members, each protein was purified to homogeneity, subjected to direct protein sequencing, and the sequences compared with those deduced from LHC IIb genes in this organism. The 28 kDa protein is the product of Type I LHC IIb genes. The 25 kDa LHC IIb component is distinctly different from the 28 kDa LHC IIb protein, and is more closely related to the type III LHC IIb gene product of barley. Type III gene products lack the first 9–11 residues found in proteins of the Type I and II genes, a region that contains a phosphorylatable threonine residue. The lack of the N-terminal residues explains why this LHC IIb apoprotein has never been seen to be phosphorylated, and partly or wholly why it is smaller. The implication of the missing N-terminus on uptake of LHC II precursor proteins into the plastid and of the relative organization of the LHC IIb subunits in the PS II antenna is discussed

    A Segment of the Apospory-Specific Genomic Region Is Highly Microsyntenic Not Only between the Apomicts Pennisetum squamulatum and Buffelgrass, But Also with a Rice Chromosome 11 Centromeric-Proximal Genomic Region

    No full text
    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory

    Digital genotyping of sorghum – a diverse plant species with a large repeat-rich genome

    Get PDF
    BACKGROUND: Rapid acquisition of accurate genotyping information is essential for all genetic marker-based studies. For species with relatively small genomes, complete genome resequencing is a feasible approach for genotyping; however, for species with large and highly repetitive genomes, the acquisition of whole genome sequences for the purpose of genotyping is still relatively inefficient and too expensive to be carried out on a high-throughput basis. Sorghum bicolor is a C(4) grass with a sequenced genome size of ~730 Mb, of which ~80% is highly repetitive. We have developed a restriction enzyme targeted genome resequencing method for genetic analysis, termed Digital Genotyping (DG), to be applied to sorghum and other grass species with large repeat-rich genomes. RESULTS: DG templates are generated using one of three methylation sensitive restriction enzymes that recognize a nested set of 4, 6 or 8 bp GC-rich sequences, enabling varying depth of analysis and integration of results among assays. Variation in sequencing efficiency among DG markers was correlated with template GC-content and length. The expected DG allele sequence was obtained 97.3% of the time with a ratio of expected to alternative allele sequence acquisition of >20:1. A genetic map aligned to the sorghum genome sequence with an average resolution of 1.47 cM was constructed using 1,772 DG markers from 137 recombinant inbred lines. The DG map enhanced the detection of QTL for variation in plant height and precisely aligned QTL such as Dw3 to underlying genes/alleles. Higher-resolution NgoMIV-based DG haplotypes were used to trace the origin of DNA on SBI-06, spanning Ma1 and Dw2 from progenitors to BTx623 and IS3620C. DG marker analysis identified the correct location of two miss-assembled regions and located seven super contigs in the sorghum reference genome sequence. CONCLUSION: DG technology provides a cost-effective approach to rapidly generate accurate genotyping data in sorghum. Currently, data derived from DG are used for many marker-based analyses, including marker-assisted breeding, pedigree and QTL analysis, genetic map construction, map-based gene cloning and association studies. DG in combination with whole genome resequencing is dramatically accelerating all aspects of genetic analysis of sorghum, an important genetic reference for C(4) grass species
    corecore