3 research outputs found
Serratia marcescens, the “Flame” Strain: The Genesis of a New Variant A Newly Described Strain with Prolific Pigment Produced at High Temperature
Serratia marcescens, a Gram-negative, rod-shaped, facultative anaerobe (Fig. 1), is ubiquitous in water, soil, and natural settings. It is easily grown in the lab and may serve as an ideal model for adaptation studies because of the natural color variation of S. marcescens (Gillen 2008). In this paper, we describe a new variant with prolific pigment (prodigiosin) production at high temperatures. In the wild and in buildings, S. marcescens is noted for the production of a bright red pigment called prodigiosin (Williams 1973). We have found a new strain that appears to have adapted to a relatively new pond system called Liberty Library Lake. It produces pigment up to 40°C without any enrichment to media. Most wild-type strains, like NIMA, produce pigment normally up to 30°C, but with extensive enrichment, wild-type strains can produce pigment up to 40°C. This new strain, called the “Flame” strain, not only produces prodigiosin to 39–40°C but also in higher abundance at 35°C and at a brighter hue. NIMA strains can produce pigment at 39–40°C with Serratia Synergy Agar (glycerol, peptone, agar) but not on TSA nor any common agar. It takes significant enhancement for any other Serratia marcescens strains to produce pigment even at 35°C.
The Flame strain’s brief appearance in a local, small lake appears to be a phenotypic diversification and adaptation to an environmental perturbation this past school year. The environmental stress prior to its appearance was an autumn drought. Eventually, heavy rainfall occurred and the new strain was discovered. Its appearance coincided with an unusually high abundance of coliforms, avian Giardia, and Cryptosporidium, along with chemical treatment of the lake. The unusual conditions seem to favor a rapid phenotypic diversification and adaptation. The new strain still retains the pigment production at nearly 10°C higher for “normal” prodigiosin production by wild-type Serratia marcescens. This genesis of this new strain seems to have occurred as special conditions favored this new variant. It may be closer to a “proto-type” (ancestral) strain than to more common wild-type strains, like NIMA and BS303. It appears that most wild-type strains, like NIMA and BS303, may have lost this information over time since added enrichment is necessary to produce pigment at 39–40°C. The unusual conditions may have selected for this newly adapted strain to be common for a short time. Also as conditions returned to “normal,” a common wild-type strain reappeared at the local lake, and the Flame strain was no longer found.
The objective of this article is to explain the mysterious origin of a new strain of Serratia marcescens that produces prodigiosin up to 40°C without any enrichment to media. This strain can naturally produce prolific pigment that is a bright, flame-red. Since Serratia marcescens offers protection from other microbes, UV light, and drought, it is a wonderful example of intelligent design commonly seen in the microbial world
Intestinal malrotation in a female newborn affected by Osteopathia Striata with Cranial Sclerosis due to a de novo heterozygous nonsense mutation of the AMER1 gene
Abstract Background Osteopathia Striata with Cranial Sclerosis (OS-CS), also known as Horan-Beighton Syndrome, is a rare genetic disease; about 90 cases have been reported to date. It is associated with mutations (heterozygous for female subjects and hemizygous for males) of the AMER1 gene, located at Xq11.2, and shows an X-linked pattern of transmission. Typical clinical manifestations include macrocephaly, characteristic facial features (frontal bossing, epicanthal folds, hypertelorism, depressed nasal bridge, orofacial cleft, prominent jaw), hearing loss and developmental delay. Males usually present a more severe phenotype than females and rarely survive. Diagnostic suspicion is based on clinical signs, radiographic findings of cranial and long bones sclerosis and metaphyseal striations, subsequent genetic testing may confirm it. Case presentation Hereby, we report on a female newborn with frontal and parietal bossing, narrow bitemporal diameter, dysplastic, low-set and posteriorly rotated ears, microretrognathia, cleft palate, and rhizomelic shortening of lower limbs. Postnatally, she manifested feeding intolerance with biliary vomiting and abdominal distension. Therefore, in the suspicion of bowel obstruction, she underwent surgery, which evidenced and corrected an intestinal malrotation. Limbs X-ray and skull computed tomography investigations did not show cranial sclerosis and/or metaphyseal striations. Array-CGH analysis revealed normal findings. Then, a target next generation sequencing (NGS) analysis, including the genes involved in skeletal dysplasias, was performed and revealed a de novo heterozygous nonsense mutation of the AMER1 gene. The patient was discharged at 2 months of age and included in a multidisciplinary follow-up. Aged 9 months, she now shows developmental and growth (except for relative macrocephaly) delay. The surgical correction of cleft palate has been planned. Conclusions Our report shows the uncommon association of intestinal malrotation in a female newborn with OS-CS. It highlights that neonatologists have to consider such a diagnosis, even in absence of cranial sclerosis and long bones striations, as these usually appear over time. Other syndromes with cranial malformations and skeletal dysplasia must be included in the differential diagnosis. The phenotypic spectrum is wide and variable in both genders. Due to variable X-inactivation, females may also show a severe and early-onset clinical picture. Multidisciplinary management and careful, early and long-term follow-up should be offered to these patients, in order to promptly identify any associated morbidities and prevent possible complications or adverse outcomes