140 research outputs found

    First comparison of French and Australian OsHV-1 µvars by bath exposure

    Get PDF
    Economically devastating mortality events of farmed and wild shellfish due to infectious disease have been reported globally. Currently, one of the most significant disease threats to Pacific oyster Crassostrea gigas culture is the ostreid herpesvirus 1 (OsHV-1), in particular the emerging OsHV-1 microvariant genotypes. OsHV-1 microvariants (OsHV-1 μvars) are spreading globally, and concern is high among growers in areas unaffected by OsHV-1. No study to date has compared the relative virulence among variants. We provide the first challenge study comparing survival of naïve juvenile Pacific oysters exposed to OsHV-1 μvars from Australia (AUS μvar) and France (FRA μvar). Oysters challenged with OsHV-1 μvars had low survival (2.5% exposed toAUS μvar and 10% to FRA μvar), and high viral copy number as compared to control oysters(100% survival and no virus detected). As our study was conducted in a quarantine facility located~320 km from the ocean, we also compared the virulence of OsHV-1 μvars using artificial seawater made from either facility tap water (3782 μmol kg−1seawater total alkalinity) or purchased distilled water (2003 μmol kg−1). Although no differences in survival or viral copy number were detected in oysters exposed to seawater made using tap or distilled water, more OsHV-1 was detected in tanks containing the lower-alkalinity seawater, indicating that water quality may be important for virus transmission, as it may influence the duration of viral viability outside of the hos

    Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children

    Get PDF
    BACKGROUND: Organophosphate (OP) pesticides are widely used in agriculture and homes. Animal studies suggest that even moderate doses are neurodevelopmental toxicants, but there are few studies in humans. OBJECTIVES: We investigated the relationship of prenatal and child OP urinary metabolite levels with children’s neurodevelopment. METHODS: Participating children were from a longitudinal birth cohort of primarily Latino farm-worker families in California. We measured six nonspecific dialkylphosphate (DAP) metabolites in maternal and child urine as well as metabolites specific to malathion (MDA) and chlorpyrifos (TCPy) in maternal urine. We examined their association with children’s performance at 6 (n = 396), 12 (n = 395), and 24 (n = 372) months of age on the Bayley Scales of Infant Development [Mental Development (MDI) and Psychomotor Development (PDI) Indices] and mother’s report on the Child Behavior Checklist (CBCL) (n = 356). RESULTS: Generally, pregnancy DAP levels were negatively associated with MDI, but child measures were positively associated. At 24 months of age, these associations reached statistical significance [per 10-fold increase in prenatal DAPs: β = −3.5 points; 95% confidence interval (CI), −6.6 to −0.5; child DAPs: β = 2.4 points; 95% CI, 0.5 to 4.2]. Neither prenatal nor child DAPs were associated with PDI or CBCL attention problems, but both prenatal and postnatal DAPs were associated with risk of pervasive developmental disorder [per 10-fold increase in prenatal DAPs: odds ratio (OR) = 2.3, p = 0.05; child DAPs OR = 1.7, p = 0.04]. MDA and TCPy were not associated with any outcome. CONCLUSIONS: We report adverse associations of prenatal DAPs with mental development and pervasive developmental problems at 24 months of age. Results should be interpreted with caution given the observed positive relationship with postnatal DAPs

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    C-Terminal Mutants of Apolipoprotein L-I Efficiently Kill Both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense

    Get PDF
    Apolipoprotein L-I (apoL1) is a human-specific serum protein that kills Trypanosoma brucei through ionic pore formation in endosomal membranes of the parasite. The T. brucei subspecies rhodesiense and gambiense resist this lytic activity and can infect humans, causing sleeping sickness. In the case of T. b. rhodesiense, resistance to lysis involves interaction of the Serum Resistance-Associated (SRA) protein with the C-terminal helix of apoL1. We undertook a mutational and deletional analysis of the C-terminal helix of apoL1 to investigate the linkage between interaction with SRA and lytic potential for different T. brucei subspecies. We confirm that the C-terminal helix is the SRA-interacting domain. Although in E. coli this domain was dispensable for ionic pore-forming activity, its interaction with SRA resulted in inhibition of this activity. Different mutations affecting the C-terminal helix reduced the interaction of apoL1 with SRA. However, mutants in the L370-L392 leucine zipper also lost in vitro trypanolytic activity. Truncating and/or mutating the C-terminal sequence of human apoL1 like that of apoL1-like sequences of Papio anubis resulted in both loss of interaction with SRA and acquired ability to efficiently kill human serum-resistant T. b. rhodesiense parasites, in vitro as well as in transgenic mice. These findings demonstrate that SRA interaction with the C-terminal helix of apoL1 inhibits its pore-forming activity and determines resistance of T. b. rhodesiense to human serum. In addition, they provide a possible explanation for the ability of Papio serum to kill T. b. rhodesiense, and offer a perspective to generate transgenic cattle resistant to both T. b. brucei and T. b. rhodesiense

    Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis

    Get PDF
    FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1–5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2–CD44–SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state

    A leucine aminopeptidase is involved in kinetoplast DNA segregation in <i>Trypanosoma brucei</i>

    Get PDF
    The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks

    TbPIF5 Is a Trypanosoma brucei Mitochondrial DNA Helicase Involved in Processing of Minicircle Okazaki Fragments

    Get PDF
    Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments

    Identification of a Bacterial-Like HslVU Protease in the Mitochondria of Trypanosoma brucei and Its Role in Mitochondrial DNA Replication

    Get PDF
    ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms

    Automated Nuclear Analysis of Leishmania major Telomeric Clusters Reveals Changes in Their Organization during the Parasite's Life Cycle

    Get PDF
    Parasite virulence genes are usually associated with telomeres. The clustering of the telomeres, together with their particular spatial distribution in the nucleus of human parasites such as Plasmodium falciparum and Trypanosoma brucei, has been suggested to play a role in facilitating ectopic recombination and in the emergence of new antigenic variants. Leishmania parasites, as well as other trypanosomes, have unusual gene expression characteristics, such as polycistronic and constitutive transcription of protein-coding genes. Leishmania subtelomeric regions are even more unique because unlike these regions in other trypanosomes they are devoid of virulence genes. Given these peculiarities of Leishmania, we sought to investigate how telomeres are organized in the nucleus of Leishmania major parasites at both the human and insect stages of their life cycle. We developed a new automated and precise method for identifying telomere position in the three-dimensional space of the nucleus, and we found that the telomeres are organized in clusters present in similar numbers in both the human and insect stages. While the number of clusters remained the same, their distribution differed between the two stages. The telomeric clusters were found more concentrated near the center of the nucleus in the human stage than in the insect stage suggesting reorganization during the parasite's differentiation process between the two hosts. These data provide the first 3D analysis of Leishmania telomere organization. The possible biological implications of these findings are discussed

    Trypanosome Lytic Factor, an Antimicrobial High-Density Lipoprotein, Ameliorates Leishmania Infection

    Get PDF
    Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system
    corecore