25 research outputs found

    Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues

    No full text
    AbstractGeneration of de novo cardiomyocytes through viral over-expression of key transcription factors represents a highly promising strategy for cardiac muscle tissue regeneration. Although the feasibility of cell reprogramming has been proven possible both in vitro and in vivo, the efficiency of the process remains extremely low. Here, we report a chemical-free technique in which topographical cues, more specifically parallel microgrooves, enhance the directed differentiation of cardiac progenitors into cardiomyocyte-like cells. Using a lentivirus-mediated direct reprogramming strategy for expression of Myocardin, Tbx5, and Mef2c, we showed that the microgrooved substrate provokes an increase in histone H3 acetylation (AcH3), known to be a permissive environment for reprogramming by “stemness” factors, as well as stimulation of myocardin sumoylation, a post-translational modification essential to the transcriptional function of this key co-activator. These biochemical effects mimicked those of a pharmacological histone deacetylase inhibitor, valproic acid (VPA), and like VPA markedly augmented the expression of cardiomyocyte-specific proteins by the genetically engineered cells. No instructive effect was seen in cells unresponsive to VPA. In addition, the anisotropy resulting from parallel microgrooves induced cellular alignment, mimicking the native ventricular myocardium and augmenting sarcomere organization

    Phenotypic differences between highlanders and lowlanders in Papua New Guinea

    Get PDF
    Objectives Altitude is one of the most demanding environmental pressures for human populations. Highlanders from Asia, America and Africa have been shown to exhibit different biological adaptations, but Oceanian populations remain understudied [Woolcock et al., 1972; Cotes et al., 1974; Senn et al., 2010]. We tested the hypothesis that highlanders phenotypically differ from lowlanders in Papua New Guinea, as a result of inhabiting the highest mountains in Oceania for at least 20,000 years. Materials and methods We collected data for 13 different phenotypes related to altitude for 162 Papua New Guineans living at high altitude (Mont Wilhelm, 2,300-2,700 m above sea level (a.s.l.) and low altitude (Daru, <100m a.s.l.). Multilinear regressions were performed to detect differences between highlanders and lowlanders for phenotypic measurements related to body proportions, pulmonary function, and the circulatory system. Results Six phenotypes were significantly different between Papua New Guinean highlanders and lowlanders. Highlanders show shorter height (p-value = 0.001), smaller waist circumference (p-value = 0.002), larger Forced Vital Capacity (FVC) (p-value = 0.008), larger maximal (pvalue = 3.20e -4) and minimal chest depth (p-value = 2.37e -5) and higher haemoglobin concentration (p-value = 3.36e -4). Discussion Our study reports specific phenotypes in Papua New Guinean highlanders potentially related to altitude adaptation. Similar to other human groups adapted to high altitude, the evolutionary history of Papua New Guineans appears to have also followed an adaptive biological strategy for altitude

    Suivi téléphonique des patients testés positifs au SARS-CoV-2 au Département d’oncologie du CHUV [Telephone follow-up of SARS-CoV-2 positive patients at the Oncology Department of Lausanne University Hospital]

    No full text
    Compared with the general population, oncology patients face a higher morbidity and mortality caused by the COVID-19 pandemic. As a result, health systems had to quickly adapt cancer care in order to maintain the best quality and patient safety. From March to May and from October to December 2020, 254 patients diagnosed with cancer and tested positive for SARS-CoV-2 benefited from a tele-health monitoring at the Oncology Department at CHUV. This article describes the key points of the development, implementation and operation of this tele-health monitoring, enabled by an interdisciplinary and inter-professional collaboration between different units and healthcare professionals

    Biophysical regulation of epigenetic state and cell reprogramming

    No full text
    Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5) - a subunit of H3 methyltranferase - by microgrooved surfaces leads to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fiber orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications
    corecore