92 research outputs found
Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1
Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.Fil: Sampayo, Rocío Guadalupe. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toscani, Andrés Martin. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rubashkin, Matthew G.. University of California; Estados UnidosFil: Thi, Kate. Lawrence Berkeley National Laboratory; Estados UnidosFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Lakins, Jonathon N.. University of California; Estados UnidosFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Hines, William C.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Chialvo, Dante Renato. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Weaver, Valerie M.. University of California; Estados UnidosFil: Simian, Marina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin
Analysis of bacterial communities of infected primary teeth in a Mexican population
The objective of this study was to describe the bacterial communities associated with pediatric patients with endodontic infections of temporal teeth by targeting the 16S rRNA gene using pyrosequencing. Microbiological samples were obtained from the lower primary molars of thirteen 13 pediatric patients with dental infections. An aspiration method for microbiological sampling was used. The identification of microbiota employing the pyrosequencing method by targeting the 16S gene was performed. Ribosomal 16S RNA gene sequences were amplified, obtaining a total of 16,182 sequences from 13 primary infected molars (13 different individuals) by pyrosequencing. Bacteroidetes phyla (35.15%) were the most abundant followed by Firmicutes (33.3%) and Fusobacteria (10.05%); the presence of specific pathogenic bacteria was determined as well. The infected root canal of primary teeth contains a high diversity of anaerobic bacteria, and Bacteroidetes, Firmicutes, and Fusobacteria phyla were the most abundant; Prevotella and Streptococcus genera were the most prevalent
Patients with Systemic Lupus Erythematosus Show Increased Levels and Defective Function of CD69 +
T regulatory (Treg) cells have a key role in the pathogenesis of chronic inflammatory and autoimmune diseases. A CD4+CD69+ T cell subset has been described that behaves as Treg lymphocytes, exerting an important immune suppressive effect. In this study, we analyzed the levels and function of CD4+CD69+ Treg cells in patients with systemic lupus erythematosus (SLE). Blood samples were obtained from 22 patients with SLE and 25 healthy subjects. Levels of CD4+CD69+ Treg cells were analyzed by multiparametric flow cytometry, and their function was measured by an assay of suppression of lymphocyte activation and through the inhibition of cytokine synthesis. We found an increased percent of CD4+CD25varCD69+TGF-β+IL-10+Foxp3− lymphocytes in patients with SLE compared to controls. In addition, a significant diminution in the suppressive effect of these cells on the activation of autologous T lymphocytes was observed in most patients with SLE. Accordingly, CD69+ Treg cells from SLE patients showed a defective capability to inhibit the release of IL-2, IL-6, IL-10, and IL-17A by autologous lymphocytes. Our findings suggest that while CD4+CD69+ Treg lymphocyte levels are increased in SLE patients, these cells are apparently unable to contribute to the downmodulation of the autoimmune response and the tissue damage seen in this condition
Cargo-specific recruitment in clathrin and dynamin-independent endocytosis
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis, and cancer invasion and is often hijacked by viral infections. Unlike clathrin-mediated endocytosis, which exploits cargo-specific adaptors for selective protein internalization, the clathrin and dynamin-independent endocytic pathway (CLIC-GEEC, CG-pathway) has until now been considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. Although the core molecular players of CG endocytosis have been recently defined, no cargo-specific adaptors are known and evidence of selective protein uptake into the pathway is lacking. Here, we identify the first cargo-specific adaptor for CG-endocytosis and demonstrate its clinical relevance in breast cancer progression. By combining unbiased molecular characterization and super-resolution imaging, we identified the actin-binding protein swiprosin-1 (EFHD2) as a cargo-specific adaptor regulating integrin internalization via the CG-pathway. Swiprosin-1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery, IRSp53 and actin. Swiprosin-1 is critical for integrin endocytosis, but not for other CG-cargo and supports integrin-dependent cancer cell migration and invasion, with clinically relevant implications for breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG-pathway and opens the possibility to discover more adaptors regulating it
Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.Moreno-Layseca et al. identify Swip1 as an integrin-specific endocytic adaptor controlling the dynamics of integrin adhesion complexes as well as the migration and invasion of breast cancer cells
International lower limb collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures
Trauma remains a major cause of mortality and disability across the world1, with a higher burden in developing nations2. Open lower extremity injuries are devastating events from a physical3, mental health4, and socioeconomic5 standpoint. The potential sequelae, including risk of chronic infection and amputation, can lead to delayed recovery and major disability6. This international study aimed to describe global disparities, timely intervention, guideline-directed care, and economic aspects of open lower limb injuries
International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures
International Lower Limb Collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures
- …
