30 research outputs found

    Solar energy technologies for passive and low-cost water desalination

    Get PDF
    L'abstract ĆØ presente nell'allegato / the abstract is in the attachmen

    Process optimization of osmotic membrane distillation for the extraction of valuable resources from water streams

    Get PDF
    The rising demand for sustainable wastewater management and high-value resource recovery is pressing industries involved in, e.g., textiles, metals, and food production, to adopt energy-efficient and flexible liquid separation methods. The current techniques often fall short in achieving zero liquid discharge and enhancing socio-economic growth sustainably. Osmotic membrane distillation (OMD) has emerged as a low-temperature separation process designed to concentrate valuable elements and substances in dilute feed streams. The efficacy of OMD hinges on the solventā€™s migration from the feed to the draw stream through a hydrophobic membrane, driven by the vapor pressure difference induced by both temperature and concentration gradients. However, the intricate interplay of heat and mass processes steering this mechanism is not yet fully comprehended or accurately modeled. In this research, we conducted a combined theoretical and experimental study to explore the capabilities and thermodynamic limitations of OMD. Under diverse operating conditions, the experimental campaign aimed to corroborate our theoretical assertions. We derived a novel equation to govern water flux based on foundational principles and introduced a streamlined version for more straightforward application. Our findings spotlight complex transport-limiting and self-adjusting mechanisms linked with temperature and concentration polarization phenomena. Compared with traditional methods like membrane distillation and osmotic dilution, which are driven by solely temperature or concentration gradients, OMD may provide improved and flexible performance in target applications. For instance, we show that OMDā€”if properly optimizedā€”can achieve water vapor fluxes 50% higher than osmotic dilution. Notably, OMD operation at reduced feed temperatures can lead to energy savings ranging between 5 and 95%, owing to the use of highly concentrated draw solutions. This study underscores the potential of OMD in real-world applications, such as concentrating lithium in wastewater streams. By enhancing our fundamental understanding of OMDā€™s potential and constraints, we aim to broaden its adoption as a pivotal liquid separation tool, with focus on sustainable resource recovery

    Exergy analysis of solar desalination systems based on passive multi-effect membrane distillation

    Get PDF
    Improving the efficiency and sustainability of water treatment technologies is crucial to reduce energy consumption and environmental pollution. Solar-driven devices have the potential to supply off-grid areas with freshwater through a sustainable approach. Passive desalination driven by solar thermal energy has the additional advantage to require only inexpensive materials and easily maintainable components. The bottleneck to the widespread diffusion of such solar passive desalination technologies is their lower productivity with respect to active ones. A completely passive, multi-effect membrane distillation device with an efficient use of solar energy and thus a remarkable enhancement in distillate productivity has been recently proposed. The improved performance of this distillation device comes from the efficient exploitation of low-temperature thermal energy to drive multiple distillation processes. In this work, we analyze the proposed distillation technology by a more in-depth thermodynamic detail, considering a Second Law analysis. We then report a detailed exergy analysis, which allows to get insights on the production of irreversibilities in each component of the assembly. These calculations provide guidelines for the possible optimization of the device, since simple changes in the original configuration may easily yield up to a 46% increase in the Second Law efficiency. Keywords: Sustainability, Exergy analysis, Water treatment, Membrane distillation, Solar energ

    Solar passive distiller with high productivity and Marangoni effect-driven salt rejection

    Get PDF
    Inadequate water supply, sanitation and hygiene in remote locations, developing countries, and disaster zones fuel the growing demand for efficient small-scale desalination technologies. The aim is to provide high-quality freshwater to water-stressed and disaster-stricken communities even in the absence of energy infrastructure. The major key drivers behind the development of these technologies are the low cost of materials, the flexibility of the technology, the sustainability of the freshwater production, and the long-term stability of the device performance. However, the main challenge is to achieve stable performance by either preventing or mitigating salt accumulation during the desalination process. We present a multistage passive solar distiller whose key-strength is an optimized geometry leading to enhanced water yield (as compared to similar state of the art technologies) and spontaneous salt rejection. A comprehensive theoretical study is conducted to explain the apparently paradoxical experimental effective transport exceeding classical diffusion by two orders of magnitude. In our study, the Marangoni effect is included at the waterā€“air interface and it stems from spatial gradients of surface tension. Interestingly, theoretical and experimental results demonstrate that the device is able to reject overnight all the salt accumulated on each evaporator during daytime operation. Furthermore, under realistic conditions, a distillate flow rate of almost 2 L m2 h1 from seawater at less than one sun illumination has been experimentally observed. The reported mechanism of the enhanced salt rejection process may have tremendous implications in the desalination field as it paves the way to the design of a new generation of hydrophilic and porous materials for passive thermal desalination. We envision that such a technology can help provide cheap drinking water, in a robust way, during emergency conditions, while maintaining stable performance over a long time

    Multiscale simulation approach to heat and mass transfer properties of nanostructured materials for sorption heat storage

    Get PDF
    Thermal storage devices are becoming crucial for the exploitation of solar energy. From the point of view of seasonal energy storage, the most promising technology is represented by adsorption thermal batteries, which allow storing energy without heat loss with time. The improvement of thermal batteries design is related to a better understating of transport phenomena occurring in the adsorption/desorption phases. In this work, we discuss an efficient computational protocol to characterize adsorbent materials, in terms of both heat and mass transfer proprieties. To this purpose, a hybrid Molecular Dynamics and Monte Carlo method is developed. The proposed model is then tested on two types of 13X zeolite, with 76 and 88 Na cations. The results obtained, such as adsorbate diffusivity, adsorption curves, and heat of adsorption are validated with the literature. Finally, in the view of a multiscale analysis of sorption thermal storage devices, the possible use of the simulation outputs as inputs of thermal fluid dynamics models of adsorbent beds is discussed

    Efficient steam generation by inexpensive narrow gap evaporation device for solar applications

    Get PDF
    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ā‰„85%) and relatively low optical concentration (ā‰ˆ10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials

    Installation of a Concentrated Solar Power System for the Thermal Needs of Buildings or Industrial Processes

    Get PDF
    Solar energy is one of the main alternatives to carbon-intensive sources of energy. However, limited attention has been devoted to small-scale (<10 kW) concentrated solar power systems, which are capable to provide high-temperature heat to buildings or industrial processes. In this work, we describe the concentrated solar power system (7.4 kW thermal power) with dual axis solar tracker installed at Politecnico di Torino. The solar concentrator system is coupled to a sensible heat storage by a plate heat exchanger. Here, we provide preliminary data on the system efficiency and compare it to typical values obtained by flat plates or evacuated tubes collectors. The generated high-temperature thermal power is suitable for both domestic hot water, heating and cooling, and industrial purposes

    Textured and Rigid Capillary Materials for Passive Energyā€Conversion Devices

    Get PDF
    Passive energy-conversion devices based on water uptake and evaporation offer a robust and cost-effective alternative in a wide variety of applications. This work introduces a new research avenue in the design of passive devices by replacing traditional porous materials with rigid capillary layers engraved with optimized V-shaped grooves. The concept is tested using aluminum sheets, which are machined by femtosecond laser and covered by silica or functionalized by oxygen plasma to achieve stable long-term capillary properties. The durability of the proposed material is experimentally evaluated when functioning with aqueous salt concentrations: both the coated and functionalized specimens exhibit stable wettability after being immersed in saltwater for all the duration of the experiments (ā‰ˆ250 h in this work). The proposed new class of materials is envisaged for use in passive solar or thermal energy-conversion devices. As a case study, a time-discretized capillary model is coupled with a validated lumped-parameters heat and mass transfer model, aiming to estimate the maximum size and productivity of a passive solar distiller employing porous materials of known thermal and capillary properties. This study paves the way to the use of a new class of rigid, highly thermally conductive materials that can significantly improve the performance of passive devices by simplifying the assembly of multistage setups, thus helping to extend their use to real-scale applications

    Synergistic freshwater and electricity production using passive membrane distillation and waste heat recovered from camouflaged photovoltaic modules

    Get PDF
    A sustainable supply of both freshwater and energy is key for modern societies. In this work, we investigate a synergistic way to address both these issues, producing freshwater while reducing greenhouse gas emissions due to electricity generation. To this, we propose a coupling between a photovoltaic (PV) device and an innovative desalination technique based on passive multi-stage membrane distillation. The passive distillation device is driven by low-temperature heat and does not need any mechanical or electrical devices to operate. The required heat is recovered from the back side of the PV device that, for the first time, mitigates the aesthetic and environmental impact thanks to an innovative surface texture. The aim is to demonstrate the feasibility to generate PV electricity from the sun and, simultaneously, freshwater from the waste heat. The solution is studied by numerical simulations and experiments at the same time, achieving a good accordance between these two approaches. The device is able to produce up to 2 L m-2 h-1 of freshwater under one sun irradiance. Furthermore, a relative photovoltaic efficiency gain of 4.5% is obtained, since the temperature of the PV module is reduced by 9 Ā°C when coupled with the desalination technology. This work paves the way to compact installations made of such passive units, which may easily provide energy and safe water with low environmental and visual impact, especially in off-grid areas and emergency conditions

    3D printed lattice metal structures for enhanced heat transfer in latent heat storage systems

    Get PDF
    The low thermal conductivity of Phase Change Materials (PCMs), e.g., paraffin waxes, is one of the main drawbacks of latent heat storage, especially when fast charging and discharging cycles are required. The introduction of highly conductive fillers in the PCM matrix may be an effective solution; however, it is difficult to grant their stable and homogeneous dispersion, which therefore limits the resulting enhancement of the overall thermal conductivity. Metal 3D printing or additive manufacturing, instead, allows to manufacture complex geometries with precise patterns, therefore allowing the design of optimal paths for heat conduction within the PCM. In this work, a device-scale latent heat storage system operating at medium temperatures (āˆ¼ 90 Ā°C) was manufactured and characterized. Its innovative design relies on a 3D Cartesian metal lattice, fabricated via laser powder bed fusion, to achieve higher specific power densities. Numerical and experimental tests demonstrated remarkable specific power (approximately 714 Ā± 17 W kgāˆ’1 and 1310 Ā± 48 W kgāˆ’1 during heat charge and discharge, respectively). Moreover, the device performance remained stable over multiple charging and discharging cycles. Finally, simulation results were used to infer general design guidelines to further enhance the device performance. This work aims at promoting the use of metal additive manufacturing to design efficient and responsive thermal energy storage units for medium-sized applications, such as in the automotive sector (e.g. speed up of the engine warm up or as an auxiliary for other enhanced thermal management strategies
    corecore