6 research outputs found

    Experimentelle Analyse von horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons fĂĽr die solarthermische Fassadenintegration

    Get PDF
    Die vorliegende Dissertation dient der experimentellen Analyse von horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons für die solarthermische Fassadenintegration. Zwei-Phasen-Thermosiphons, die den Verdampfungs-/Kondensationskreislauf über die Schwerkraft aufrechterhalten, sind in der Lage, auch unter horizontaler Ausrichtung hohe Wärmeleistungen zu erzielen. Die gegenwärtig bestehende Datenlage zu thermischem Widerstand und Leistungsgrenzen von horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons zeichnet jedoch, insbesondere für die Abhängigkeit von Füllgrad und Neigungswinkel, kein einheitliches Bild. Zudem wird ein häufig instationäres Verhalten beim Betrieb um die Horizontale beschrieben. Es ist nicht auszuschließen, dass das instationäre Verhalten von Zwei-Phasen-Thermosiphons im Horizontalen, gepaart mit unterschiedlichen Definitionen und Methoden zur Bestimmung der Leistungsgrenze, seinen Anteil an der unklaren Datenlage hat. Eine allein auf Literaturdaten beruhende Auslegung von Zwei-Phasen-Thermosiphons für die winkelflexible, auch horizontale Fassadenintegration ist folglich nicht möglich. Im ersten Teil der vorliegenden Arbeit werden verschiedene Definitionen und Messmethoden zur Bestimmung der Leistungsgrenze hinsichtlich ihrer Eignung zur Beschreibung von solaren horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons untersucht. Die Arbeit stellt dabei einen umfassenden Überblick über Definitionen der Leistungsgrenze und den möglichen Einfluss auf die gemessene Leistungsgrenze solarer horizontaler und leicht geneigter Wärmerohre zur Verfügung. Es wird erkannt, dass keine der in der Literatur vorhandenen Definitionen der Leistungsgrenze alleinstehend für die Beschreibung des komplexen instationären Betriebsverhaltens von Zwei-Phasen-Thermosiphons um die Horizontale geeignet ist. Stattdessen wird die Analyse und Bewertung des Grenzbetriebsverhaltens von horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons anhand von sogenannten „Temperaturphänomen-Karten“ vorgeschlagen. Damit wird in der Arbeit eine Methodik entwickelt, mit der das komplexe Betriebsverhalten von horizontalen und leicht geneigten Zwei-Phasen-Thermosiphons abgebildet werden kann und die – in Verbindung mit einer breiten experimentellen Analyse – die Basis für eine fundierte Auslegung von Zwei-Phasen-Thermosiphons um die Horizontale liefern könnte. Im zweiten Teil der Arbeit wird ein für die Anwendung in einem Test-Fassadenkollektor des Projekts „ArKol“ vorgesehener solarer Zwei-Phasen-Thermosiphon hinsichtlich seines Betriebsverhaltens – auch unter Anwendung der neu entwickelten Methodik der Temperaturphänomen-Karten – analysiert. Es zeigt sich, dass der thermische Widerstand des Test-Thermosiphons für einen Füllgrad von 30 % bei einer Neigung von 0° und +0,5° bei geringen Temperaturen vom erhöhten Widerstand zwischen Verdampfer und adiabater Zone dominiert wird. Für einen Füllgrad von 45 % wird der thermische Widerstand dagegen bei geringen bis mäßigen Temperaturen für alle gemessenen Winkel zwischen 0° und +10° vom Widerstand zwischen der adiabaten Zone und dem Kühlwasser bestimmt. Für 30 % Füllgrad wird in den betreffenden Betriebspunkten eine Austrocknung des Verdampfers, für 45 % Füllgrad eine Teilflutung des Kondensators vermutet. Die zur Analyse des Grenzbetriebsverhaltens herangezogenen Temperaturphänomen-Karten offenbaren, dass für einen Betrieb bei horizontaler Ausrichtung deutlich mehr Betriebspunkte vorliegen, denen ein stationäres oder nur leicht instationäres Verhalten zugeordnet werden kann, als bei geneigter Ausrichtung. Gleichzeitig treten in horizontaler Ausrichtung jedoch häufiger Phänomene hoher Instationarität auf, die den Wärmerohrbetrieb massiv gefährden. Ob eine geringere Leistungsgrenze für horizontale oder leicht geneigte Zwei-Phasen-Thermosiphons erkannt wird, hängt damit von der Definition des Leistungsgrenzphänomens ab. Auf Basis der durchgeführten Untersuchungen kann ein horizontaler Betrieb des Test-Thermosiphons im Test-Fassadenkollektor nicht ohne das Auftreten von den Wärmerohrbetrieb gefährdenden Temperaturphänomenen garantiert werden. Die Machbarkeit einer leicht geneigten Installation ist aufgrund der unter diesen Winkeln über einen breiten Betriebsbereich auftretenden mäßigen Instationaritäten in Dauer- und Geräuschtests zu prüfen

    Design Concepts and Performance Characterization of Heat Pipe Wick Structures by LPBF Additive Manufacturing

    No full text
    Additive manufacturing offers a wide range of possibilities for the design and optimization of lightweight and application-tailored structures. The great design freedom of the Laser Powder Bed Fusion (LPBF) manufacturing process enables new design and production concepts for heat pipes and their internal wick structures, using various metallic materials. This allows an increase in heat pipe performance and a direct integration into complex load-bearing structures. An important influencing factor on the heat pipe performance is the internal wick structures. The complex and filigree geometry of such structures is challenging in regards to providing high manufacturing quality at a small scale and varying orientations during the printing process. In this work, new wick concepts have been developed, where the design was either determined by the geometrical parameters, the process parameters, or their combination. The wick samples were additively manufactured with LPBF technology using the lightweight aluminum alloy Scalmalloy®. The influence of the process parameters, geometrical design, and printing direction was investigated by optical microscopy, and the characteristic wick performance parameters were determined by porosimetry and rate-of-rise measurements. They showed promising results for various novel wick concepts and indicated that additive manufacturing could be a powerful manufacturing method to further increase the performance and flexibility of heat pipes
    corecore