8 research outputs found

    Intraspecific variation in sensitivity to habitat fragmentation is influenced by forest cover and distance to the range edge

    Get PDF
    The relative effects of habitat loss and fragmentation on biodiversity have been a topic of discussion for decades. While it is acknowledged that habitat amount can mediate the effects of habitat fragmentation, it is unclear what other factors may drive inter- and intraspecific variation in fragmentation effects and their implications for conservation. We tested whether the effects of forest fragmentation on 362 bird species' occurrence in the Atlantic Forest of Brazil are mediated by distance to geographic range edge and habitat amount, and whether these effects explain intraspecific variation across populations. Using a single binomial linear mixed effects model, we found that fragmentation had mostly negative effects on occurrence probability up to 1080 km from the species' range edge, independent of habitat amount. We also show that above this distance, fragmentation has predominantly positive effects, more accentuated in deforested landscapes. We demonstrate that fragmentation effects can be both positive and negative, indicating that different populations of the same species can respond differently depending on distance to range edge and local forest cover. Our results help clarify one of the drivers of contradictory results found in the fragmentation literature and highlight the importance of preventing habitat fragmentation for the conservation of endangered populations. Conservation initiatives should focus on minimising fragmentation closer to range edges of target species and in regions where species range edges overlap

    Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    Get PDF
    Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world’s biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.The authors acknowledge the following funding: University of Canterbury Doctoral Scholarship (L.P.M.); The Marsden Fund grant UOC1705 (J.M.T., L.P.M.); The São Paulo Research Foundation - FAPESP 2014/01986-0 (M.G., C.E.), 2015/15172-7 and 2016/18355-8 (C.E.), 2004/00810-3 and 2008/10154-7 (C.I.D., M.G., M.A.P.); Earthwatch Institute and Conservation International for financial support (C.I.D., M.G., M.A.P.); Carlos Chagas Filho Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ grant E-26/200.610/2022 (C.E.); Brazilian Research Council grants 540481/01-7 and 304742/2019-8 (M.A.P.) and 300970/2015-3 (M.G.); Rufford Small Grants for Nature Conservation No. 22426–1 (J.C.M., I.M.), No. 9163-1 (G.B.J.) and No. 11042-1 (MCM); Universidade Estadual de Santa Cruz (Propp-UESC; No. 00220.1100.1644/10-2018) (J.C.M., I.M.); Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB (No. 0525/2016) (J.C.M., I.M.); European Research Council under the European Union’s Horizon 2020 research and innovation program (grant 787638) and The Swiss National Science Foundation (grant 173342), both awarded to C. Graham (D.M.D.); ARC SRIEAS grant SR200100005 Securing Antarctica’s Environmental Future (D.M.D.); German Science Foundation—Deutsche Forschungsgemeinschaft PAK 825/1 and FOR 2730 (K.B.G., E.L.N., M.Q., V.S., M.S.), FOR 1246 (K.B.G., M.S., M.G.R.V.) and HE2041/20-1 (F.S., M.S.); Portuguese Foundation for Science and Technology - FCT/MCTES contract CEECIND/00135/2017 and grant UID/BIA/04004/2020 (S.T.) and contract CEECIND/02064/2017 (L.P.S.); National Scientific and Technical Research Council, PIP 592 (P.G.B.); Instituto Venezolano de Investigaciones Científicas - Project 898 (V.S.D.)

    Extinction filters mediate the global effects of habitat fragmentation on animals

    Get PDF
    Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests

    Data and code: Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    No full text
    Zip-file including the Data and Code necessary for reproducing the analyses from 'Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions'. General Information regarding the data is included as a pdf file in the download.Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1,496 plant and 1,004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world’s biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.Funding: University of Canterbury Doctoral Scholarship; The Marsden Fund, Award: UOC1705; Earthwatch Institute and Conservation International for financial support; Carlos Chagas Filho Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ , Award: E-26/200.610/2022 Universidade Estadual de Santa Cruz, Award: Propp-UESC No. 00220.1100.1644/10-2018; Fundação de Amparo à Pesquisa do Estado da Bahia, Award: 0525/2016; Horizon 2020, Award: 787638; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Award: 173342 ARC SRIEAS, Award: SR200100005; National Scientific and Technical Research Council, Award: PIP 592; Instituto Venezolano de Investigaciones Científicas, Award: Project 898; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2014/01986-0; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2015/15172-7; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2016/18355-8; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2004/00810-3; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2008/10154-7; Brazilian Research Council, Award: 540481/01-7; Brazilian Research Council, Award: 304742/2019-8; Brazilian Research Council, Award: 300970/2015-3; Rufford Small Grants for Nature Conservation, Award: 22426–1; Rufford Small Grants for Nature Conservation, Award: 9163-1; Rufford Small Grants for Nature Conservation, Award: 11042-1; Deutsche Forschungsgemeinschaft, Award: PAK 825/1; Deutsche Forschungsgemeinschaft, Award: FOR 2730 Deutsche Forschungsgemeinschaft, Award: FOR 1246; Deutsche Forschungsgemeinschaft, Award: HE2041/20-1; Fundação para a Ciência e a Tecnologia, Award: CEECIND/00135/2017; Fundação para a Ciência e a Tecnologia, Award: UID/BIA/04004/2020; Fundação para a Ciência e a Tecnologia, Award: CEECIND/02064/2017Peer reviewe

    Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species

    No full text
    Recent studies suggest that habitat amount is the main determinant of species richness, whereas habitat fragmentation has weak and mostly positive effects. Here, we challenge these ideas using a multi-taxa database including 2230 estimates of forest-dependent species richness from 1097 sampling sites across the Brazilian Atlantic Forest biodiversity hotspot. We used a structural equation modeling approach, accounting not only for direct effects of habitat loss, but also for its indirect effects (via habitat fragmentation), on the richness of forest-dependent species. We reveal that in addition to the effects of habitat loss, habitat fragmentation has negative impacts on animal species richness at intermediate (30–60%) levels of habitat amount, and on richness of plants at high (>60%) levels of habitat amount, both of which are mediated by edge effects. Based on these results, we argue that dismissing habitat fragmentation as a powerful force driving species extinction in tropical forest landscapes is premature and unsafe
    corecore