13 research outputs found

    Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies

    Get PDF
    Neuronal pentraxin II (NPTX2) is the most highly upregulated gene in the Parkinsonian substantia nigra based on our whole genome expression profiling results. We show here that it is a novel component of Lewy bodies and Lewy neurites in sporadic Parkinson’s disease (PD). NPTX2 is also known as the neuronal activity-regulated protein (Narp), which is secreted and involved in long-term neuronal plasticity. Narp further regulates AMPA receptors which have been found to mediate highly selective non-apoptotic cell death of dopaminergic neurons. NPTX2/Narp is found in close association with alpha-synuclein aggregates in both substantia nigra and cerebral cortex in PD but unlike alpha-synuclein gene expression, which is down-regulated in the Parkinsonian nigra, NPTX2 could represent a driver of the disease process. In view of its profound (>800%) upregulation and its established role in synaptic plasticity as well as dopaminergic nerve cell death, NPTX2 is a very interesting novel player which is likely to be involved in the pathway dysregulation which underlies PD

    Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation

    Get PDF
    We have previously established a first whole genome transcriptomic profile of sporadic Parkinson’s disease (PD). After extensive brain tissue-based validation combined with cycles of iterative data analysis and by focusing on the most comparable cases of the cohort, we have refined our analysis and established a list of 892 highly dysregulated priority genes that are considered to form the core of the diseased Parkinsonian metabolic network. The substantia nigra pathways, now under scrutiny, contain more than 100 genes whose association with PD is known from the literature. Of those, more than 40 genes belong to the highly significantly dysregulated group identified in our dataset. Apart from the complete list of 892 priority genes, we present pathways revealing PD ‘hub’ as well as ‘peripheral’ network genes. The latter include Lewy body components or interact with known PD genes. Biological associations of PD with cancer, diabetes and inflammation are discussed and interactions of the priority genes with several drugs are provided. Our study illustrates the value of rigorous clinico-pathological correlation when analysing high-throughput data to make optimal use of the histopathological phenome, or morphonome which currently serves as the key diagnostic reference for most human diseases. The need for systematic human tissue banking, following the highest possible professional and ethical standard to enable sustainability, becomes evident

    Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease.

    Full text link
    We have used brain tissue from clinically well-documented and neuropathologically confirmed cases of sporadic Parkinson's disease to establish the transcriptomic expression profile of the medial and lateral substantia nigra. In addition, the superior frontal cortex was analyzed in a subset of the same cases. DNA oligonucleotide microarrays were employed, which provide whole human genome coverage. A total of 570 genes were found to be differentially regulated at a high level of significance. A large number of differentially regulated expressed sequence tags were also identified. Levels of mRNA sequences encoded by genes of key interest were validated by means of quantitative real-time polymerase chain reaction (PCR). Comparing three different normalization procedures, results based on the recently published GeneChip Robust Multi Array algorithm were found to be the most accurate predictor of real-time PCR results. Several new candidate genes which map to PARK loci are reported. In addition, the DNAJ family of chaperones is discussed in the context of Parkinson's disease pathogenesis

    Analysis of alpha-synuclein, dopamine and parkin pathways in neuropathologically confirmed parkinsonian nigra.

    Full text link
    The identification of mutations that cause familial Parkinson's disease (PD) provides a framework for studies into pathways that may be perturbed also in the far more common, non-familial form of the disorder. Following this hypothesis, we have examined the gene regulatory network that links alpha-synuclein and parkin pathways with dopamine metabolism in neuropathologically verified cases of sporadic PD. By means of an in silico approach using a database of eukaryotic molecular interactions and a whole genome transcriptome dataset validated by qRT-PCR and histological methods, we found parkin and functionally associated genes to be up-regulated in the lateral substantia nigra (SN). In contrast, alpha-synuclein and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) gene expression levels were significantly reduced in both the lateral and medial SN in PD. Gene expression for Septin 4, a member of the GTP-binding protein family involved in alpha-synuclein metabolism was elevated in the lateral parkinsonian SN. Additionally, catalase and mitogen-activated protein kinase 8 and poly(ADP-ribose) polymerase family member 1 (PARP1) known to function in DNA repair and cell death induction, all members of the dopamine synthesis pathway, were up-regulated in the lateral SN. In contrast, two additional PD-linked genes, glucocerebrosidase and nuclear receptor subfamily 4, group A, member 2 (NR4A2) showed reduced expression. We show that in sporadic PD, parkin, alpha-synuclein and dopamine pathways are co-deregulated. Alpha-synuclein is a member of all three gene regulatory networks. Our analysis results support the view that alpha-synuclein has a central role in the familial as well as the non-familial form of the disease and provide steps towards a pathway definition of PD

    Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function

    No full text

    Historical Context

    No full text
    corecore