18,738 research outputs found

    Fast-to-Alfv\'en mode conversion mediated by Hall current. II Application to the solar atmosphere

    Full text link
    Coupling between fast magneto-acoustic and Alfv\'en waves can be observe in fully ionized plasmas mediated by stratification and 3D geometrical effects. In Paper I, Cally & Khomenko (2015) have shown that in a weakly ionized plasma, such as the solar photosphere and chromosphere, the Hall current introduces a new coupling mechanism. The present study extends the results from Paper I to the case of warm plasma. We report on numerical experiments where mode transformation is studied using quasi-realistic stratification in thermodynamic parameters resembling the solar atmosphere. This redresses the limitation of the cold plasma approximation assumed in Paper I, in particular allowing the complete process of coupling between fast and slow magneto-acoustic modes and subsequent coupling of the fast mode to the Alfv\'en mode through the Hall current. Our results confirm the efficacy of the mechanism proposed in Paper I for the solar case. We observe that the efficiency of the transformation is a sensitive function of the angle between the wave propagation direction and the magnetic field, and of the wave frequency. The efficiency increases when the field direction and the wave direction are aligned for increasing wave frequencies. After scaling our results to typical solar values, the maximum amplitude of the transformed Alfv\'en waves, for a frequency of 1 Hz, corresponds to an energy flux (measured above the height of peak Hall coupling) of ∼103\sim10^3 W m−2\rm W\,m^{-2}, based on an amplitude of 500 m s−1\rm m\,s^{-1} at β=1\beta=1, which is sufficient to play a major role in both quiet and active region coronal heating

    On the perturbative corrections around D-string instantons

    Get PDF
    We study F4{\cal F}^4-threshold corrections in an eight dimensional S-dual pair of string theories, as a prototype of dual string vacua with sixteen supercharges. We show that the orbifold CFT description of D-string instantons gives rise to a perturbative expansion similar to the one appearing on the fundamental string side. By an explicit calculation, using the Nambu-Goto action in the static gauge, we show that the first subleading term agrees precisely on the two sides. We then give a general argument to show that the agreement extends to all orders.Comment: 12 page

    AdS/CFT correspondence and D1/D5 systems in theories with 16 supercharges

    Get PDF
    We discuss spectra of AdS3AdS_3 supergravities, arising in the near horizon geometry of D1/D5 systems in orbifolds/orientifolds of type IIB theory with 16 supercharges. These include models studied in a recent paper (hep-th/0012118), where the group action involves also a shift along a transversal circle, as well as IIB/ΩI4\Omega I_4, which is dual to IIB on K3K3. After appropriate assignements of the orbifold group eigenvalues and degrees to the supergravity single particle spectrum, we compute the supergravity elliptic genus and find agreement, in the expected regime of validity, with the elliptic genus obtained using U-duality map from (4,4) CFTs of U-dual backgrounds. Since this U-duality involves the exchange of KK momentum PP and D1 charge NN, it allows us to test the (4,4) CFTs in the P<N/4P < N/4 and N<P/4N < P/4 regimes by two different supergravity duals.Comment: 28 pages, no figure

    c(2x2) Interface Alloys in Co/Cu Multilayers - Influence on Interlayer Exchange Coupling and GMR

    Full text link
    The influence of a c(2x2) ordered interface alloy of 3d transition metals at the ferromagnet/nonmagnet interface on interlayer exchange coupling (IXC), the formation of quantum well states (QWS) and the phenomenon of Giant MagnetoResistance is investigated. We obtained a strong dependence of IXC on interface alloy formation. The GMR ratio is also strongly influenced. We found that Fe, Ni and Cu alloys at the interface enhance the GMR ratio for in-plane geometry by nearly a factor of 2.Comment: 14 pages, 5 figures, 1 table, subm. to PR

    Using Wavelets to reject background in Dark Matter experiments

    Full text link
    A method based on wavelet techniques has been developed and applied to background rejection in the data of the IGEX dark matter experiment. The method is presented and described in some detail to show how it efficiently rejects events coming from noise and microphonism through a mathematical inspection of their recorded pulse shape. The result of the application of the method to the last data of IGEX is presented.Comment: 14 pages, 8 figures. Submitted to Astrop. Phy

    The biogeography of iberian orthopteroids

    Get PDF
    • …
    corecore