20 research outputs found

    Diurnal aboveground activity by the fossorial silvery legless lizard, Anniella pulchra

    No full text
    Volume: 56Start Page: 379End Page: 38

    AGE AND MOVEMENT OF A HYBRID ZONE: IMPLICATIONS FOR DISPERSAL DISTANCE IN POCKET GOPHERS AND THEIR CHEWING LICE

    No full text
    Historical flood records for the Rio Grande Valley of New Mexico suggest that a pocket gopher (Thomomys bottae) hybrid zone previously thought to be 10,000 years old may actually be closer to 50 years old. Measured zone width (defined genetically) is consistent with the hypothesis of recent contact, if we assume a reasonable dispersal distance of approximately 400 m/year for pocket gophers. A five-year study of movement of the contact zone between the two species of chewing lice that parasitize these pocket gophers also is consistent with the hypothesis of recent origin of the zone

    Mammalian mesocarnivore visitation at tortoise burrows in a wind farm

    No full text
    There is little information on predator–prey interactions in wind energy landscapes in North America, especially among terrestrial vertebrates. Here, we evaluated how proximity to roads and wind turbines affect mesocarnivore visitation with desert tortoises (Gopherus agassizii) and their burrows in a wind energy landscape. In 2013, we placed motion-sensor cameras facing the entrances of 46 active desert tortoise burrows in a 5.2-km2 wind energy facility near Palm Springs, California, USA. Cameras recorded images of 35 species of reptiles, mammals, and birds. Counts for 4 species of mesocarnivores at desert tortoise burrows increased closer to dirt roads, and decreased closer to wind turbines. Our results suggest that anthropogenic infrastructure associated with wind energy facilities could influence the general behavior of mammalian predators and their prey. Further investigation of proximate mechanisms that underlie road and wind turbine effects (i.e., ground vibrations, sound emission, and traffic volume) and on wind energy facility spatial designs (i.e., road and wind turbine configuration) could prove useful for better understanding wildlife responses to wind energy development. © 2017 The Wildlife Society
    corecore