11 research outputs found
Inhibition of a Secreted Immune Molecule Interferes With Termite Social Immunity
Social immune behaviors are described in a great variety of insect societies and their role in preventing emerging infectious diseases has become a major topic in insect research. The social immune system consists of multiple layers, ranging from the synthesis of external immune molecules to the coordination of individual behaviors into sophisticated collective defensive tasks. But our understanding of how complex group-level behavioral defenses are orchestrated has remained limited. We sought to address this gap in knowledge by investigating the relationship between the external activity of an important immune effector molecule in termites, Gram negative binding protein 2 (GNBP-2) and collective grooming and cannibalism. We reasoned that as an external enzyme capable of degrading entomopathogenic fungi, GNBP-2 can facilitate the spread of pathogenic molecules in the colony, and thus serve to trigger collective defenses in a manner analogous to pathogen-associated molecular signatures (PAMPs) of the individual immune system. To test whether GNBP-2 could play a role in regulating social immune behavior, we experimentally inhibited its fungicidal activity using the glycomimetic molecule, D-d-gluconolactone (GDL) and recorded collective behavioral responses to an infected nestmate. Contrary to expectations, GNBP-2 inhibition did not influence the rate or intensity of grooming of either control or fungus-infected nestmates. By contrast, we found that the probability of being harmed through defensive cannibalistic behaviors was significantly reduced by the inhibition of GNBP-2. Our findings indicate that the regulation of collective immune behaviors may depend in part on the external secretion of an enzyme originating from the individual immune system, but that other cues are also necessary
Defensive behavior is linked to altered surface chemistry following infection in a termite society
The care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the physiological underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination, via cannibalism, occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though it did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or terminal disease status has been established. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead and viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviors involved in the disease defense of a termite society
Evidence for reduced immune gene diversity and activity during the evolution of termites
This study was supported by Freie Universität Internal Research Funding and Devtsche Forschungsgemeinschaft (DFG, grant no. MC 436/5-1) to D.P.M. S.H., P.S. and J.S. are supported by ‘EVA4.0’ (no. CZ.02.1.01/0.0/0.0/16_019/0000803), and P.S. and J.S. are supported by CIGA no. 20184306. Y.C. and Z.W. are supported by the National Natural Science Foundation of China (grant no. 31672329).The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.Peer reviewe
Eating in a losing cause : limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis
Open Access funding enabled and organized by Projekt DEAL. S.H. was supported by the Chinese Scholarship Council and D.P.M. was supported by a seed-funding Grant provided by the Freie Universität Berlin and grant MC 436/6-1 from the Deutsche Forschungsgemeinschaft (DFG).Background Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. Conclusions We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.Peer reviewe
Evidence for reduced immune gene diversity and activity during the evolution of termites
The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence
Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis
Background
Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection.
Results
We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status.
Conclusions
We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted
Defensive behavior is linked to altered surface chemistry following infection in a termite society
International audienceThe care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination (via cannibalism) occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though injection did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or even terminal disease status is known. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead or viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviours involved in the disease defence of a termite society
Evidence for reduced immune gene diversity and activity during the evolution of termites
This dataset contains data from a termite immunity related study described in the paper: “He Shulin, Sieksmeyer Thorben, Che Yanli, Mora M. Alejandra Esparza, Stiblik Petr, Banasiak Ronald, Harrison Mark C., Šobotník Jan, Wang Zongqing, Johnston Paul R. and McMahon Dino P. 2021Evidence for reduced immune gene diversity and activity during the evolution of termitesProc. R. Soc. B.288:20203168.http://doi.org/10.1098/rspb.2020.3168”. The study investigates the evolution of termite molecular immune system: evolution of immune gene family along a constructed phylogeny, different individual immune response between three termite castes, a subsocial cockroach and a non-social cockroach, the caste specific expression of immune genes, different social immune response between a social termite species and a non-social cockroach species. In the first experiment, we de novo sequenced 18 cockroach and termite species, spanning the full spectrum of solitary and social lifestyles, including two solitary cockroach species, two species of subsocial Cryptocercus wood-feeding cockroaches and 14 termite species. We exploited a transcriptomic approach to compare the immune gene repertoire of these sequenced species. In the second experiment, we compared individual immune responses in a solitary cockroach, B. orientalis, a subsocial wood-feeding roach, Cryptocercus meridianus, and each caste of a social termite, Neotermes castaneus, following direct injection with heat-killed microbes. In the third experiment, we explored total gene expression differences between castes without immune challenge. In the fourth experiment, we studied gene expression changes in each caste of N. castaneus following colony exposure to immune-challenged nestmates, and compared these with gene expression changes in the solitary cockroach, B. orientalis, following group exposure to immune-challenged conspecifics. Main results of the experiments are that (1) immune gene families show contractions and expansions during temite evolution; (2) compared with cockroaches, termites showed weak individual immune response; (3) termites have caste-specific constitutive immunity; (4) Compared with cockroach, termite showed a stronger gene expression changes in response to a social immune challenge
Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis
Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection.We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status.We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host\u27s dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted
International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module
•We report INICC device-associated module data of 50 countries from 2010-2015.•We collected prospective data from 861,284 patients in 703 ICUs for 3,506,562 days.•DA-HAI rates and bacterial resistance were higher in the INICC ICUs than in CDC-NHSN's.•Device utilization ratio in the INICC ICUs was similar to CDC-NHSN's.
Background: We report the results of International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2010-December 2015 in 703 intensive care units (ICUs) in Latin America, Europe, Eastern Mediterranean, Southeast Asia, and Western Pacific.
Methods: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days.
Results: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs.
Conclusions: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically