2,699 research outputs found
Nonlinear Qubit Transformations
We generalise our previous results of universal linear manipulations [Phys.
Rev. A63, 032304 (2001)] to investigate three types of nonlinear qubit
transformations using measurement and quantum based schemes. Firstly, nonlinear
rotations are studied. We rotate different parts of a Bloch sphere in opposite
directions about the z-axis. The second transformation is a map which sends a
qubit to its orthogonal state (which we define as ORTHOG). We consider the case
when the ORTHOG is applied to only a partial area of a Bloch sphere. We also
study nonlinear general transformation, i.e. (theta,phi)->(theta-alpha,phi),
again, applied only to part of the Bloch sphere. In order to achieve these
three operations, we consider different measurement preparations and derive the
optimal average (instead of universal) quantum unitary transformations. We also
introduce a simple method for a qubit measurement and its application to other
cases.Comment: minor corrections. To appear in PR
Quantum disentanglers
It is not possible to disentangle a qubit in an unknown state from a
set of (N-1) ancilla qubits prepared in a specific reference state . That
is, it is not possible to {\em perfectly} perform the transformation
. The question is then how well we can do? We consider a number of
different methods of extracting an unknown state from an entangled state formed
from that qubit and a set of ancilla qubits in an known state. Measuring the
whole system is, as expected, the least effective method. We present various
quantum ``devices'' which disentangle the unknown qubit from the set of ancilla
qubits. In particular, we present the optimal universal disentangler which
disentangles the unknown qubit with the fidelity which does not depend on the
state of the qubit, and a probabilistic disentangler which performs the perfect
disentangling transformation, but with a probability less than one.Comment: 8 pages, 1 eps figur
Optimal Universal Disentangling Machine for Two Qubit Quantum States
We derive the optimal curve satisfied by the reduction factors, in the case
of universal disentangling machine which uses only local operations.
Impossibility of constructing a better disentangling machine, by using
non-local operations, is discussed.Comment: 15 pages, 2 eps figures, 1 section added, 1 eps figure added, minor
corrections, 2 reference numbers correcte
Recommended from our members
A multi-proxy shallow marine record for Mid-to-Late Holocene climate variability, Thera eruptions and cultural change in the Eastern Mediterranean
Time and position sensitive single photon detector for scintillator read-out
We have developed a photon counting detector system for combined neutron and
gamma radiography which can determine position, time and intensity of a
secondary photon flash created by a high-energy particle or photon within a
scintillator screen. The system is based on a micro-channel plate
photomultiplier concept utilizing image charge coupling to a position- and
time-sensitive read-out anode placed outside the vacuum tube in air, aided by a
standard photomultiplier and very fast pulse-height analyzing electronics. Due
to the low dead time of all system components it can cope with the high
throughput demands of a proposed combined fast neutron and dual discrete energy
gamma radiography method (FNDDER). We show tests with different types of
delay-line read-out anodes and present a novel pulse-height-to-time converter
circuit with its potential to discriminate gamma energies for the projected
FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201
Growth and Characterization Of Tantulam Selenide
Layered structure (lamellar) solids of transition metal dichalcogenides MX2 (M=Mo,W,Nb,Ta, X=S,Se,Te) have been extensively studied partly because of their excellent lubricating properties and partly due to their photovoltaic properties. Undo extreme pressures fluid lubricants squeeze out from between metting surfaces, causing high friction and wear. With lamellar solids such as TMDCs, shearing takes place more easily when loads are high. So, lamellar solids are well suited to extreme pressure lubrication. As a part of programme of growing than single crystals, this paper presents the growth of TaSe2. The vapour transport technique using iodine as a transporting agent and EDAX and XRD studies gives confirmation also stoichiomatric and structural properties. The type, concentration of charge carriers and also the carrier mobility has been obtained by the Hall effect measurement at room temperature
Steady-State Analysis of Load Balancing with Coxian- Distributed Service Times
This paper studies load balancing for many-server ( servers) systems. Each
server has a buffer of size and can have at most one job in service and
jobs in the buffer. The service time of a job follows the Coxian-2
distribution. We focus on steady-state performance of load balancing policies
in the heavy traffic regime such that the normalized load of system is for We identify a set of policies that
achieve asymptotic zero waiting. The set of policies include several classical
policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ),
idle-one-first (I1F) and power-of--choices (Po) with . The proof of the main result is based on Stein's method and state space
collapse. A key technical contribution of this paper is the iterative state
space collapse approach that leads to a simple generator approximation when
applying Stein's method
PLCε1 suppresses tumor growth by regulating murine T cell mobilization
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154282/1/cei13409.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154282/2/cei13409_am.pd
- …