3 research outputs found

    Atomistic Insight into the Electrochemical Double Layer of Choline Chloride–Urea Deep Eutectic Solvents: Clustered Interfacial Structuring

    No full text
    textcopyright 2018 American Chemical Society. Green, stable, and wide electrochemical window deep eutectic solvents (DESs) are ideal candidates for electrochemical systems. However, despite several studies of their bulk properties, their structure and properties under electrified confinement have barely been investigated, which has hindered widespread use of these solvents in electrochemical applications. In this Letter, we explore the electrical double layer structure of 1:2 choline chloride-urea (Reline), with a particular focus on the electrosorption of the hydrogen bond donor on a graphene electrode using atomistic molecular dynamics simulations. We discovered that the interface is composed of a mixed layer of urea and counterions followed by a mixed charged clustered structure of all of the Reline components. This interfacial structuring is strongly dependent on the balance between intermolecular interactions and surface polarization. These results provide new insights into the electrical double layer structure of a new generation of electrolytes whose interfacial structure can be tuned at the molecular level.info:eu-repo/semantics/publishe

    Water distribution at the electrified interface of deep eutectic solvents

    No full text
    Preferential asymmetric electrosorption of water onto a moderately polarized electrode surface.info:eu-repo/semantics/publishe

    Advanced simulation techniques for the thermodynamic and kinetic characterization of biological systems

    No full text
    corecore