1,194 research outputs found
Constraints on Mars Aphelion Cloud Belt Phase Function and Ice Crystal Geometries
This study constrains the lower bound of the scattering phase function of
Martian water ice clouds (WICs) through the implementation of a new observation
aboard the Mars Science Laboratory (MSL). The Phase Function Sky Survey (PFSS)
was a multiple pointing all-sky observation taken with the navigation cameras
(Navcam) aboard MSL. The PFSS was executed 35 times during the Aphelion Cloud
Belt (ACB) season of Mars Year 34 over a solar longitude range of
L_s=61.4{\deg}-156.5{\deg}. Twenty observations occurred in the morning hours
between 06:00 and 09:30 LTST, and 15 runs occurred in the evening hours between
14:30 and 18:00 LTST, with an operationally required 2.5 hour gap on either
side of local noon due the sun being located near zenith. The resultant WIC
phase function was derived over an observed scattering angle range of
18.3{\deg} to 152.61{\deg}, normalized, and compared with 9 modeled phase
functions: seven ice crystal habits and two Martian WIC phase functions
currently being implemented in models. Through statistical chi-squared
probability tests, the five most probable ice crystal geometries observed in
the ACB WICs were aggregates, hexagonal solid columns, hollow columns, plates,
and bullet rosettes with p-values greater than or equal to 0.60,
0.57,0.56,0.56, and 0.55, respectively. Droxtals and spheres had p-values of
0.35, and 0.2, making them less probable components of Martian WICs, but still
statistically possible ones. Having a better understanding of the ice crystal
habit and phase function of Martian water ice clouds directly benefits Martian
climate models which currently assume spherical and cylindrical particles.Comment: Accepted Manuscript by Planetary and Space Scienc
Recommended from our members
An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand
BACKGROUND: Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity. RESULTS: We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation. CONCLUSION: Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1
Controlling pulse propagation in optical fibers through nonlinearity and dispersion management
In case of the nonlinear Schr\"odinger equation with designed group velocity
dispersion, variable nonlinearity and gain/loss; we analytically demonstrate
the phenomenon of chirp reversal crucial for pulse reproduction. Two different
scenarios are exhibited, where the pulses experience identical dispersion
profiles, but show entirely different propagation behavior. Exact expressions
for dynamical quasi-solitons and soliton bound-states relevant for fiber
communication are also exhibited.Comment: 4 pages, 5 eps figure
Dynamic remodelling of synapses can occur in the absence of the parent cell body
<p>Abstract</p> <p>Background</p> <p>Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body.</p> <p>Results</p> <p>We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events.</p> <p>Conclusion</p> <p>The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is released from damaged cells. Local control demands that the elements necessary to drive retraction are constitutively present. We hypothesize that pre-existing scaffolds of molecular motors and cytoskeletal proteins could provide the dynamism required to drive such structural changes in nerve terminals in the absence of the cell body.</p
Celebrity advocacy and public engagement: the divergent uses of celebrity
This article sounds a cautionary note about the instrumental use of celebrity advocacy to (re)engage audiences in public life. It begins by setting out the steps necessary to achieve public recognition of a social problem requiring a response. It then presents empirical evidence which suggests that those most interested in celebrity, while also paying attention to the main stories of the day, are also least likely to participate in any form of politics. However, this does not rule out the possibility of forging a link between celebrity and public engagement, raising questions about what would potentially sustain such an articulation. After discussing the broader cultural context of celebrity advocacy in which perceived authenticity functions valorised form of symbolic capital, the article outlines a phenomenological approach to understanding the uses audiences make of celebrity advocacy, using the example of a Ewan McGregor UNICEF appeal for illustration. It concludes that while media encounters with celebrities can underpin a viewer’s sense of self, this is as likely to lead to the rationalisation of inaction as a positive response to a charity appeal
- …