45 research outputs found

    Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles

    Full text link
    While feedback loops are known to play important roles in many complex systems, their existence is ignored in a large part of the causal discovery literature, as systems are typically assumed to be acyclic from the outset. When applying causal discovery algorithms designed for the acyclic setting on data generated by a system that involves feedback, one would not expect to obtain correct results. In this work, we show that---surprisingly---the output of the Fast Causal Inference (FCI) algorithm is correct if it is applied to observational data generated by a system that involves feedback. More specifically, we prove that for observational data generated by a simple and σ\sigma-faithful Structural Causal Model (SCM), FCI is sound and complete, and can be used to consistently estimate (i) the presence and absence of causal relations, (ii) the presence and absence of direct causal relations, (iii) the absence of confounders, and (iv) the absence of specific cycles in the causal graph of the SCM. We extend these results to constraint-based causal discovery algorithms that exploit certain forms of background knowledge, including the causally sufficient setting (e.g., the PC algorithm) and the Joint Causal Inference setting (e.g., the FCI-JCI algorithm).Comment: Major revision. To appear in Proceedings of the 36 th Conference on Uncertainty in Artificial Intelligence (UAI), PMLR volume 124, 202

    Markov Properties for Graphical Models with Cycles and Latent Variables

    Get PDF
    We investigate probabilistic graphical models that allow for both cycles and latent variables. For this we introduce directed graphs with hyperedges (HEDGes), generalizing and combining both marginalized directed acyclic graphs (mDAGs) that can model latent (dependent) variables, and directed mixed graphs (DMGs) that can model cycles. We define and analyse several different Markov properties that relate the graphical structure of a HEDG with a probability distribution on a corresponding product space over the set of nodes, for example factorization properties, structural equations properties, ordered/local/global Markov properties, and marginal versions of these. The various Markov properties for HEDGes are in general not equivalent to each other when cycles or hyperedges are present, in contrast with the simpler case of directed acyclic graphical (DAG) models (also known as Bayesian networks). We show how the Markov properties for HEDGes - and thus the corresponding graphical Markov models - are logically related to each other.Comment: 131 page

    Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

    Get PDF
    We address the problem of causal discovery from data, making use of the recently proposed causal modeling framework of modular structural causal models (mSCM) to handle cycles, latent confounders and non-linearities. We introduce {\sigma}-connection graphs ({\sigma}-CG), a new class of mixed graphs (containing undirected, bidirected and directed edges) with additional structure, and extend the concept of {\sigma}-separation, the appropriate generalization of the well-known notion of d-separation in this setting, to apply to {\sigma}-CGs. We prove the closedness of {\sigma}-separation under marginalisation and conditioning and exploit this to implement a test of {\sigma}-separation on a {\sigma}-CG. This then leads us to the first causal discovery algorithm that can handle non-linear functional relations, latent confounders, cyclic causal relationships, and data from different (stochastic) perfect interventions. As a proof of concept, we show on synthetic data how well the algorithm recovers features of the causal graph of modular structural causal models.Comment: Accepted for publication in Conference on Uncertainty in Artificial Intelligence 201

    Sufficient conditions for convergence of the Sum-Product Algorithm

    Get PDF
    We derive novel conditions that guarantee convergence of the Sum-Product algorithm (also known as Loopy Belief Propagation or simply Belief Propagation) to a unique fixed point, irrespective of the initial messages. The computational complexity of the conditions is polynomial in the number of variables. In contrast with previously existing conditions, our results are directly applicable to arbitrary factor graphs (with discrete variables) and are shown to be valid also in the case of factors containing zeros, under some additional conditions. We compare our bounds with existing ones, numerically and, if possible, analytically. For binary variables with pairwise interactions, we derive sufficient conditions that take into account local evidence (i.e., single variable factors) and the type of pair interactions (attractive or repulsive). It is shown empirically that this bound outperforms existing bounds.Comment: 15 pages, 5 figures. Major changes and new results in this revised version. Submitted to IEEE Transactions on Information Theor

    Ancestral Causal Inference

    Get PDF
    Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.Comment: In Proceedings of Advances in Neural Information Processing Systems 29 (NIPS 2016

    Beyond Structural Causal Models: Causal Constraints Models

    Get PDF
    Structural Causal Models (SCMs) provide a popular causal modeling framework. In this work, we show that SCMs are not flexible enough to give a complete causal representation of dynamical systems at equilibrium. Instead, we propose a generalization of the notion of an SCM, that we call Causal Constraints Model (CCM), and prove that CCMs do capture the causal semantics of such systems. We show how CCMs can be constructed from differential equations and initial conditions and we illustrate our ideas further on a simple but ubiquitous (bio)chemical reaction. Our framework also allows to model functional laws, such as the ideal gas law, in a sensible and intuitive way.Comment: Published in Proceedings of the 35th Annual Conference on Uncertainty in Artificial Intelligence (UAI-19

    An Upper Bound for Random Measurement Error in Causal Discovery

    Get PDF
    Causal discovery algorithms infer causal relations from data based on several assumptions, including notably the absence of measurement error. However, this assumption is most likely violated in practical applications, which may result in erroneous, irreproducible results. In this work we show how to obtain an upper bound for the variance of random measurement error from the covariance matrix of measured variables and how to use this upper bound as a correction for constraint-based causal discovery. We demonstrate a practical application of our approach on both simulated data and real-world protein signaling data.Comment: Published in Proceedings of the 34th Annual Conference on Uncertainty in Artificial Intelligence (UAI-18
    corecore