236 research outputs found
Study of metals in leached soils of a municipal dumpsite in Tampico, Tamaulipas, Mexico: preliminary results
The Zapote dumpsite measures 420000 m 2 and is 28 years old; an estimated 2.5 millions tons of waste have accumulated on the site (household waste, clinical waste, commercial waste). The thickness of the waste is 3 to 9 meters. Since operations began, no control regulations have existed on the residues received. The Zapote dumpsite is located within a salt-marsh between a system of channels and river lagoons of brackish water, located in a tropical sedimentary environment in the urban zone of Tampico, Tamaulipas, Mexico. Recently, the Zapote has been closed and work is presently underway in its rehabilitation since a geo-environmental perspective. The present investigation integrates information of preliminary results of metals (Pb, Ni, Cd, Cu, Mg, Fe and Al) contained in sediments that underlie the Zapote dumpsite. In laboratory research the metals of the sediment were correlated with the metals contained in samples of leachate from the Zapote dumpsite. The concentration of metals Pb, Ni, Cd, Cu, Mg, Fe and Al were analyzed in samples of sediments that underlie the body of the dumpsite in layers of 10 cm, reaching a depth of 1.5 m under the interface waste-soil. The results denote high concentrations of metals in layers that are in contact with waste that decreased until reaching 60 to 80 cm of depth. The proportions of the concentrations of metals studied in the soil are comparable with that leached, until layers of 60 to 80 cm of depth are reached, and are then lost in the deepest layers. The high plastic characteristics of clay layers have stood in the way of metallic contaminants in sub layers of the Zapote dumpsite. The results were correlated with metal concentrations of natural and anthropogenic sediments of the region
Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation
Plasmacytoid dendritic cells (pDC) are activators of innate and adaptive immune responses that express HLA-DR, toll-like receptor (TLR) 7, TLR9 and produce type I interferons. The role of human pDC in malaria remains poorly characterised. pDC activation and cytokine production were assessed in 59 malaria-naive volunteers during experimental infection with 150 or 1,800 P. falciparum-parasitized red blood cells. Using RNA sequencing, longitudinal changes in pDC gene expression were examined in five adults before and at peak-infection. pDC responsiveness to TLR7 and TLR9 stimulation was assessed in-vitro. Circulating pDC remained transcriptionally stable with gene expression altered for 8 genes (FDRβ<β0.07). There was no upregulation of co-stimulatory molecules CD86, CD80, CD40, and reduced surface expression of HLA-DR and CD123 (IL-3R-Ξ±). pDC loss from the circulation was associated with active caspase-3, suggesting pDC apoptosis during primary infection. pDC remained responsive to TLR stimulation, producing IFN-Ξ± and upregulating HLA-DR, CD86, CD123 at peak-infection. In clinical malaria, pDC retained HLA-DR but reduced CD123 expression compared to convalescence. These data demonstrate pDC retain function during a first blood-stage P. falciparum exposure despite sub-microscopic parasitaemia downregulating HLA-DR. The lack of evident pDC activation in both early infection and malaria suggests little response of circulating pDC to infection
Dark Matter and Higgs Sector
The inert doublet model is an extension of the Standard Model of Elementary
Particles that is defined by the only addition of a second Higgs doublet
without couplings to quarks or leptons. This minimal framework has been studied
for many reasons. In particular, it has been suggested that the new degrees of
freedom contained in this doublet can account for the Dark Matter of the
Universe.Comment: 6 pages, 3 figures,To appear in the Proceedings of the sixth
International Workshop on the Dark Side of the Universe (DSU2010) Leon,
Guanajuato, Mexico 1-6 June 201
IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Bottom-Water Conditions in a Marine Basin after the CretaceousβPaleogene Impact Event: Timing the Recovery of Oxygen Levels and Productivity
An ultra-high-resolution analysis of major and trace element contents from the CretaceousβPaleogene boundary interval in the Caravaca section, southeast Spain, reveals a quick recovery of depositional conditions after the impact event. Enrichment/depletion profiles of redox sensitive elements indicate significant geochemical anomalies just within the boundary ejecta layer, supporting an instantaneous recovery βsome 102 yearsβ of pre-impact conditions in terms of oxygenation. Geochemical redox proxies point to oxygen levels comparable to those at the end of the Cretaceous shortly after impact, which is further evidenced by the contemporary macrobenthic colonization of opportunistic tracemakers. Recovery of the oxygen conditions was therefore several orders shorter than traditional proposals (104β105 years), suggesting a probable rapid recovery of deep-sea ecosystems at bottom and in intermediate waters.This research was supported by Projects CGL2009-07603, CGL2008-03007, CGL2012-33281 and CGL2012-32659 (SecretarΓa de Estado de I+D+I, Spain), Projects RNM-3715 and RNM 05212, and Research Groups RNM-178 and 0179 (Junta de AndalucΓa)
Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage
The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, NΓ©storβGuillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions
p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System
The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins
The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation
Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1+/β mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis
- β¦