375 research outputs found
Energy Dissipation Burst on the Traffic Congestion
We introduce an energy dissipation model for traffic flow based on the
optimal velocity model (OV model). In this model, vehicles are defined as
moving under the rule of the OV model, and energy dissipation rate is defined
as the product of the velocity of a vehicle and resistant force which works to
it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the
submitted for
Stochastic approach to inflation II: classicality, coarse-graining and noises
In this work we generalize a previously developed semiclassical approach to
inflation, devoted to the analysis of the effective dynamics of coarse-grained
fields, which are essential to the stochastic approach to inflation. We
consider general non-trivial momentum distributions when defining these fields.
The use of smooth cutoffs in momentum space avoids highly singular quantum
noise correlations and allows us to consider the whole quantum noise sector
when analyzing the conditions for the validity of an effective classical
dynamical description of the coarse-grained field. We show that the weighting
of modes has physical consequences, and thus cannot be considered as a mere
mathematical artifact. In particular we discuss the exponential inflationary
scenario and show that colored noises appear with cutoff dependent amplitudes.Comment: 18 pages, revtex, no figure
Radiation in Lorentz violating electrodynamics
Synchrotron radiation is analyzed in the classical effective Lorentz
invariance violating model of Myers-Pospelov. Within the full far-field
approximation we compute the electric and magnetic fields, the angular
distribution of the power spectrum and the total emitted power in the m-th
harmonic, as well as the polarization. We find the appearance of rather
unexpected and large amplifying factors, which go together with the otherwise
negligible naive expansion parameter. This opens up the possibility of further
exploring Lorentz invariance violations by synchrotron radiation measurements
in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and
Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200
Perturbative Hamiltonian constraints for higher order theories
We present a method for constructing a consistent low energy canonical
formalism for higher order time-derivative theories, extending the Dirac method
to include perturbative Hamiltonian constraints. We apply it to two
paradigmatic examples: the Pais-Uhlenbeck oscillator and the Bernard-Duncan
scalar field. We also compare the results, both at the classical and quantum
level, with the ones corresponding to a direct perturbative construction
applied to the exact higher order theory. This comparison highligths the
soundness of the present formalism.Comment: 26 pages, 4 figures; review section shortened and appendices change
Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach
MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications
GPU acceleration of a fully 3D iterative reconstruction software for PET using CUDA
Proceeding of: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, Florida, 25-31 October 2009A CUDA implementation of the existing software FIRST (Fast Iterative Reconstruction Software for (PET) Tomography) is presented. This implementation uses consumer graphics processing units (GPUs) to accelerate the compute-intensive parts of the reconstruction: forward and backward projection. FIRST was originally developed in FORTRAN, and it has been migrated to C language to be used with NVIDIA C for CUDA, as well as for a straightforward implementation and performance comparison between the C versions of the code running on the CPU and on the GPU. We measured the execution time of the CUDA version compared to the fastest available CPU. The CUDA implementation includes a loop re-ordering and an optimized memory allocation, which improves even more the performance of the reconstruction on the GPUs.This work was supported in part by MEC (FPA2007-62216), CDTEAM (Programa CENIT, Ministerio de Industria), UCM (Grupos UCM, 910059), CPAN (Consolider-Ingenio 2010)
CSPD-2007-00042 and the RECAVA-RETIC networ
GPU-based fast iterative reconstruction of fully 3-D PET sinograms
This work presents a graphics processing unit (GPU)-
based implementation of a fully 3-D PET iterative reconstruction
code, FIRST (Fast Iterative Reconstruction Software for [PET] Tomography),
which was developed by our group. We describe the
main steps followed to convert the FIRST code (which can run on
several CPUs using the message passing interface [MPI] protocol)
into a code where the main time-consuming parts of the reconstruction
process (forward and backward projection) are massively parallelized
on a GPU. Our objective was to obtain significant acceleration
of the reconstruction without compromising the image
quality or the flexibility of the CPU implementation. Therefore,
we implemented a GPU version using an abstraction layer for the
GPU, namely, CUDA C. The code reconstructs images from sinogram
data, and with the same System Response Matrix obtained
from Monte Carlo simulations than the CPU version. The use of
memory was optimized to ensure good performance in the GPU.
The code was adapted for the VrPET small-animal PET scanner.
The CUDA version is more than 70 times faster than the original
code running in a single core of a high-end CPU, with no loss of
accuracy.This work was supported in part by AMIT Project funded by CDTI (CENIT Programme), UCM (Grupos UCM, 910059), CPAN (Consolider-Ingenio 2010, CSPD-2007-00042), RECAVA- RETIC network, Comunidad de Madrid (ARTEMIS S2009/DPI-1802), Ministerio de Ciencia e Innovación, Spanish Government (ENTEPRASE grant, PSE-300000-2009-5 and TEC2007-64731/TCM), and European Regional funds.Publicad
Duality for symmetric second rank tensors. II. The linearized gravitational field
The construction of dual theories for linearized gravity in four dimensions
is considered. Our approach is based on the parent Lagrangian method previously
developed for the massive spin-two case, but now considered for the zero mass
case. This leads to a dual theory described in terms of a rank two symmetric
tensor, analogous to the usual gravitational field, and an auxiliary
antisymmetric field. This theory has an enlarged gauge symmetry, but with an
adequate partial gauge fixing it can be reduced to a gauge symmetry similar to
the standard one of linearized gravitation. We present examples illustrating
the general procedure and the physical interpretation of the dual fields. The
zero mass case of the massive theory dual to the massive spin-two theory is
also examined, but we show that it only contains a spin-zero excitation.Comment: 20 pages, no figure
VEP oscillation solutions to the solar neutrino problem
We study the solar neutrino problem within the framework of a parametrized
post-Newtonian formulation for the gravitational interaction of the neutrinos,
which incorporates a violation to the equivalence principle (VEP). Using the
current data on the rates and the energy spectrum we find two possible
oscillation solutions, both for a large mixing angle. One of them involves the
MSW effect in matter and the other corresponds to vacuum oscillations. An
interesting characteristic of this mechanism is that it predicts a semi-annual
variation of the neutrino flux. Our analysis provides new constraints for some
VEP parameters.Comment: revtex, 18 pages, 11 figure
- …