6,717 research outputs found
Tuning the Mott transition in a Bose-Einstein condensate by multi-photon absorption
We study the time-dependent dynamics of a Bose-Einstein condensate trapped in
an optical lattice. Modeling the system as a Bose-Hubbard model, we show how
applying a periodic driving field can induce coherent destruction of tunneling.
In the low-frequency regime, we obtain the novel result that the destruction of
tunneling displays extremely sharp peaks when the driving frequency is resonant
with the depth of the trapping potential (``multi-photon resonances''), which
allows the quantum phase transition between the Mott insulator and the
superfluid state to be controlled with high precision. We further show how the
waveform of the field can be chosen to maximize this effect.Comment: Minor changes, this version to be published in Phys. Rev. Let
Fitting isochrones to open cluster photometric data III. Estimating metallicities from UBV photometry
The metallicity is a critical parameter that affects the correct
determination fundamental characteristics stellar cluster and has important
implications in Galactic and Stellar evolution research. Fewer than 10 % of the
2174 currently catalog open clusters have their metallicity determined in the
literature. In this work we present a method for estimating the metallicity of
open clusters via non-subjective isochrone fitting using the cross-entropy
global optimization algorithm applied to UBV photometric data. The free
parameters distance, reddening, age, and metallicity simultaneously determined
by the fitting method. The fitting procedure uses weights for the observational
data based on the estimation of membership likelihood for each star, which
considers the observational magnitude limit, the density profile of stars as a
function of radius from the center of the cluster, and the density of stars in
multi-dimensional magnitude space. We present results of [Fe/H] for nine
well-studied open clusters based on 15 distinct UBV data sets. The [Fe/H]
values obtained in the ten cases for which spectroscopic determinations were
available in the literature agree, indicating that our method provides a good
alternative to determining [Fe/H] by using an objective isochrone fitting. Our
results show that the typical precision is about 0.1 dex
Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states
Recently, cesium atoms in optical lattices subjected to cycles of
unequally-spaced pulses have been found to show interesting behavior: they
represent the first experimental demonstration of a Hamiltonian ratchet
mechanism, and they show strong variability of the Dynamical Localization
lengths as a function of initial momentum. The behavior differs qualitatively
from corresponding atomic systems pulsed with equal periods, which are a
textbook implementation of a well-studied quantum chaos paradigm, the quantum
delta-kicked particle (delta-QKP). We investigate here the properties of the
corresponding eigenstates (Floquet states) in the parameter regime of the new
experiments and compare them with those of the eigenstates of the delta-QKP at
similar kicking strengths. We show that, with the properties of the Floquet
states, we can shed light on the form of the observed ratchet current as well
as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure
-Kicked Quantum Rotors: Localization and `Critical' Statistics
The quantum dynamics of atoms subjected to pairs of closely-spaced
-kicks from optical potentials are shown to be quite different from the
well-known paradigm of quantum chaos, the singly--kicked system. We
find the unitary matrix has a new oscillating band structure corresponding to a
cellular structure of phase-space and observe a spectral signature of a
localization-delocalization transition from one cell to several. We find that
the eigenstates have localization lengths which scale with a fractional power
and obtain a regime of near-linear spectral variances
which approximate the `critical statistics' relation , where is related to the fractal
classical phase-space structure. The origin of the exponent
is analyzed.Comment: 4 pages, 3 fig
Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances
Bose-Einstein condensates subject to short pulses (`kicks') from standing
waves of light represent a nonlinear analogue of the well-known chaos paradigm,
the quantum kicked rotor. Previous studies of the onset of dynamical
instability (ie exponential proliferation of non-condensate particles)
suggested that the transition to instability might be associated with a
transition to chaos. Here we conclude instead that instability is due to
resonant driving of Bogoliubov modes. We investigate the excitation of
Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the
double kicked rotor (QKR-2). We present an analytical model, valid in the limit
of weak impulses which correctly gives the scaling properties of the resonances
and yields good agreement with mean-field numerics.Comment: 8 page
Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone
Yttria stabilized zirconia single crystal fibers doped with europium ions were developed envisaging optical applications. The laser floating zone technique was used in order to grow millimetric high quality single crystal fibers. The as-grown fibers are completely transparent and inclusion free, exhibiting a cubic structure. Under ultraviolet (UV) excitation, a broad emission band appears at 551 nm. The europium doped fibers are translucent with a tetragonal structure and exhibit an intense red emission at room temperature under UV excitation. The fingerprint transition lines between the 5D0 and 7FJ(0–4) multiplets of the Eu3+ ions are observed with the main emission line at ∼ 606 nm due to 5D0→7F2 transition. Photoluminescence excitation and wavelength dependent the photoluminescence spectra confirm the existence of different Eu3+ optical centers.
© 2011 American Institute of PhysicsFCT-PTDC/CTM/66195/2006FCT-SFRH/BD/45774/200
Synthesis of sub-5 nm Co-doped SnO nanoparticles and their structural, microstructural, optical and photocatalytic properties
A swift chemical route to synthesize Co-doped SnO nanopowders is
described. Pure and highly stable SnCoO (0 x
0.15) crystalline nanoparticles were synthesized, with mean grain sizes <
5 nm and the dopant element homogeneously distributed in substitutional sites
of the SnO matrix. The UV-visible diffuse reflectance spectra of the
SnCoO samples reveal red shifts, the optical bandgap
energies decreasing with increasing Co concentration. The Urbach energies of
the samples were calculated and correlated with their bandgap energies. The
photocatalytic activity of the SnCoO samples was
investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A
complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02%
(w/w) of SnCoO nanoparticles in 60 min of
irradiation.Comment: 29 pages, 2 tables, 10 figure
- …