28 research outputs found

    Homoconjugation enhances the photophysical and electrochemical properties of a new 3D intramolecular charge transfer iptycene displaying deep blue emission

    Get PDF
    A new structural class of 3D molecule capable of intramolecular charge transfer (ICT) is introduced, based upon an electron poor ring-fused triptycene core. Its photophysical and electrochemical properties are evaluated in comparison with an analogous molecule, representative of a single fin of the iptycene. Homoconjugation through the delocalised LUMO of the iptycene facilitates a great increase in transition probability both to and from the ICT state, while the deep blue photoluminescence of the single fin is retained. The peripherally distributed HOMO of the iptycene also permits reversible access to a tricationic state in a single step and at an oxidation potential lower than that of the single fin. This first example demonstrates great potential for this 3D design concept in producing new optoelectronic molecular materials

    Synthesis of Tetracyclic 2,3-Dihydro-1,3-diazepines from a Dinitrodibenzothiophene Derivative

    Get PDF
    Triply fused 1,3-diazepine derivatives have been obtained by acidic reduction of rotationally locked and sterically hindered nitro groups in the presence of an aldehyde or ketone. The nitro groups are sited on adjacent rings of a dicyanodibenzothiophene-5,5-dioxide, which also displays fully reversible two-electron-accepting behavior. The synthesis, crystallographically determined molecular structures, and aspects of the electronic properties of these new molecules are presented

    Structure-Property Relationships for Potential Inversion from Electron Acceptors Based on Thiophene-Fused Triptycene Quinones, 1,4-Diketones and their Malononitrile Adducts

    Get PDF
    The synthesis and properties of a series of 11,11,12,12-tetracyano-9,10-anthraquinodimethane (TCAQ) inspired electron acceptors based on thiophene-fused quinone and triptycene motifs is presented. This has yielded insights into structure-property relationships for establishing and modulating simultaneous two electron reduction processes in TCAQ analogues. These new compounds were synthesised using a Friedel-Crafts acylation between triptycene and thiophene-3,4-dicarbonyl chloride. Isomeric para-quinones featuring a [c]-fused thiophene on one side and a β,β- or ι,β-fused triptycene on the other were isolated alongside a thiophene-3,4-diketone which bears two triptycene fragments. Knoevenagel condensation of these products with malononitrile produced a quinoidal bis(dicyanomethylene), an oxo-dicyanomethylene and an acyclic bis(dicyanomethylene). This series of new electron accepting molecules has been studied using X-ray crystallography and the implications of their 3D structures on NMR and UV/vis absorbance spectroscopy and cyclic voltammetry results have been ascertained with conclusions underpinned by computational methods

    Conformational Dependence of Triplet Energies in Rotationally Hindered N‐ and S‐Heterocyclic Dimers: New Design and Measurement Rules for High Triplet Energy OLED Host Materials

    Get PDF
    A series of four heterocyclic dimers has been synthesized, with twisted geometries imposed across the central linking bond by ortho‐alkoxy chains. These include two isomeric bicarbazoles, a bis(dibenzothiophene‐S,S‐dioxide) and a bis(thioxanthene‐S,S‐dioxide). Spectroscopic and electrochemical methods, supported by density functional theory, have given detailed insights into how para‐ vs. meta‐ vs. broken conjugation, and electron‐rich vs. electron‐poor heterocycles impact the HOMO–LUMO gap and singlet and triplet energies. Crucially for applications as OLED hosts, the triplet energy (ET) of these molecules was found to vary significantly between dilute polymer films and neat films, related to conformational demands of the molecules in the solid state. One of the bicarbazole species shows a variation in ET of 0.24 eV in the different media—sufficiently large to “make‐or‐break” an OLED device—with similar discrepancies found between neat films and frozen solution measurements of other previously reported OLED hosts. From consolidated optical and optoelectronic investigations of different host/dopant combinations, we identify that only the lower ET values measured in neat films give a reliable indicator of host/guest compatibility. This work also provides new molecular design rules for obtaining very high ET materials and controlling their HOMO and LUMO energies

    BMJ Open

    Get PDF
    INTRODUCTION: Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. METHODS AND ANALYSIS: The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence. ETHICS AND DISSEMINATION: Ethical approval for the GOAL study has already been obtained from the Medical Review Ethics Committee region Arnhem-Nijmegen. Additionally and when necessary, approval will also be obtained from national or local institutional review boards in the participating centres. When needed, a standardised data transfer agreement will be provided for participating centres. We plan dissemination of our results in peer-reviewed international scientific journals and through conference presentations. We expect that the results of this unique study will lead to better understanding of worldwide differences in risk factors, causes and outcome of young stroke patients

    Global Outcome Assessment Life-long after stroke in young adults initiative-the GOAL initiative : study protocol and rationale of a multicentre retrospective individual patient data meta-analysis

    Get PDF
    Introduction Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. Methods and analysis The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence.Peer reviewe

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂŽ convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂŽ model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Homoconjugated triptycene and benzodithiophene based donor-acceptor molecules alongside the first S-heterocyclic pentiptycene

    No full text
    Homoconjugated triptycene and benzodithiophene based donor-acceptor molecules alongside the first S-heterocyclic pentiptycen
    corecore