109 research outputs found

    Despliegue de MANETs para M-learning en zonas de recursos limitados

    Get PDF
    Las zonas rurales de recursos limitados del país se caracterizan, entre otros aspectos, por su baja densidad demográfica, cobertura de red celular muy limitada y carencia de servicio de distribución de energía eléctrica. Los habitantes de estas zonas utilizan energías alternativas, como paneles solares y grupos electrógenos, para cubrir necesidades energéticas elementales. La región Noroeste de Argentina (NOA) posee numerosas zonas de este tipo, donde los pobladores son personas de bajos recursos y tienen pocas posibilidades de educación en su entorno; se garantiza la educación primaria pero son pocas las escuelas secundarias. En este contexto, el aprendizaje mediado por tecnologías es prácticamente nulo. En este trabajo se propone realizar una investigación sobre el despliegue de MANETs, seguras y de bajo consumo, que permitan implementar estrategias de mlearning en estas zonas. Esta propuesta se basa en la figura de un profesor itinerante que imparte educación secundaria en zonas rurales utilizando objetos de aprendizaje almacenados en un servidor de recursos m-learning. Los objetos son accedidos desde teléfonos celulares sencillos que se auto organizan entre si, formando una MANET, para optimizar el uso de recursos.Eje: Arquitectura, Redes y Sistemas OperativosRed de Universidades con Carreras en Informática (RedUNCI

    Contribution of microscopy for understanding the mechanism of action against trypanosomatids

    Get PDF
    Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii

    Full text link
    Regulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized va cuolar c ompartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79312/1/j.1365-2958.2010.07181.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79312/2/MMI_7181_sm_FigS1-8.pd

    Inhibition of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase and Application of Statins as a Novel Effective Therapeutic Approach against Acanthamoeba Infections

    Get PDF
    Acanthamoeba is an opportunistic pathogen in humans, whose infections most commonly manifest as Acanthamoeba keratitis or, more rarely, granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba, they are generally lengthy and/or have limited efficacy. Therefore, there is a requirement for the identification, validation, and development of novel therapeutic targets against these pathogens. Recently, RNA interference (RNAi) has been widely used for these validation purposes and has proven to be a powerful tool for Acanthamoeba therapeutics. Ergosterol is one of the major sterols in the membrane of Acanthamoeba. 3-Hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase is an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, one of the precursors for the production of cholesterol in humans and ergosterol in plants, fungi, and protozoa. Statins are compounds which inhibit this enzyme and so are promising as chemotherapeutics. In order to validate whether this enzyme could be an interesting therapeutic target in Acanthamoeba, small interfering RNAs (siRNAs) against HMG-CoA were developed and used to evaluate the effects induced by the inhibition of Acanthamoeba HMG-CoA. It was found that HMG-CoA is a potential drug target in these pathogenic free-living amoebae, and various statins were evaluated in vitro against three clinical strains of Acanthamoeba by using a colorimetric assay, showing important activities against the tested strains. We conclude that the targeting of HMG-CoA and Acanthamoeba treatment using statins is a novel powerful treatment option against Acanthamoeba species in human disease

    A solanesyl-diphosphate synthase localizes in glycosomes of Trypanosoma cruzi

    Get PDF
    Fil: Ferella, Marcela. ANLIS Dr. C. G. Malbrán. Instituto Nacional de Parasitología "Dr. M. Fatala Chabén" (INP); Argentina.Fil: Montalvetti, Andrea. University of Illinois. Department of Pathobiology; Estados Unidos.Fil: Rohloff, Peter. University of Illinois. Department of Pathobiology; Estados Unidos.Fil: Miranda, Kildare. University of Georgia. Center for Tropical and Emerging Global Diseases. Department of Cellular Biology; Estados Unidos.Fil: Fang, Jianmin. University of Georgia. Center for Tropical and Emerging Global Diseases. Department of Cellular Biology; Estados Unidos.Fil: Reina, Silvia. ANLIS Dr. C. G. Malbrán. Instituto Nacional de Parasitología "Dr. M. Fatala Chabén" (INP); Argentina.Fil: Kawamukai, Makoto. University Matsue. Faculty of Life and Environmental Science. Department of Applied Bioscience and Biotechnology; Japón.Fil: Bua, Jacqueline. ANLIS Dr. C. G. Malbrán. Instituto Nacional de Parasitología "Dr. M. Fatala Chabén" (INP); Argentina.Fil: Nilsson, Daniel. Karolinska Institute. Center for Genomics and Bioinformatics; Suecia.Fil: Pravia, Carlos. ANLIS Dr. C. G. Malbrán. Instituto Nacional de Parasitología "Dr. M. Fatala Chabén" (INP); Argentina.Fil: Katzin, Alejandro. Universidade de Sao Paulo. Instituto de Ciencias Biomédicas. Departamento de Parasitologia; Brasil.Fil: Casera, María B. Universidade de Sao Paulo. Instituto de Ciencias Biomédicas. Departamento de Parasitologia; Brasil.Fil: Áslund, Lena. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Andersson, Björn. Karolinska Institute. Center for Genomics and Bioinformatics; Suecia.Fil: Docampo, Roberto. University of Illinois. Department of Pathobiology; Estados Unidos.Fil: Bontempi, Esteban. ANLIS Dr. C. G. Malbrán. Instituto Nacional de Parasitología "Dr. M. Fatala Chabén"; Argentina.We report the cloning of a Trypanosoma cruzi gene encoding a solanesyl-diphosphate synthase, TcSPPS. The amino acid sequence (molecular mass ∼ 39 kDa) is homologous to polyprenyl-diphosphate synthases from different organisms, showing the seven conserved motifs and the typical hydrophobic profile. TcSPPS preferred geranylgeranyl diphosphate as the allylic substrate. The final product, as determined by TLC, had nine isoprene units. This suggests that the parasite synthesizes mainly ubiquinone-9 (UQ-9), as described for Trypanosoma brucei and Leishmania major. In fact, that was the length of the ubiquinone extracted from epimastigotes, as determined by high-performance liquid chromatography. Expression of TcSPPS was able to complement an Escherichia coli ispB mutant. A punctuated pattern in the cytoplasm of the parasite was detected by immunofluorescence analysis with a specific polyclonal antibody against TcSPPS. An overlapping fluorescence pattern was observed using an antibody directed against the glycosomal marker pyruvate phosphate dikinase, suggesting that this step of the isoprenoid biosynthetic pathway is located in the glycosomes. Co-localization in glycosomes was confirmed by immunogold electron microscopy and subcellular fractionation. Because UQ has a central role in energy production and in reoxidation of reduction equivalents, TcSPPS is promising as a new chemotherapeutic target

    Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity

    Get PDF
    Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited

    Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    Get PDF
    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism and provided information on the potential participation of adaptor protein complexes in their biogenesis

    A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Full text link

    Mercado de cultivos : ideas y mejoras para un nuevo habitar rural

    No full text
    Fil: Montalvetti, María Constanza. Universidad Católica de Córdoba. Facultad de Arquitectura; Argentina
    corecore