529 research outputs found
Magnetic domain wall propagation in a submicron spin-valve stripe: influence of the pinned layer
The propagation of a domain wall in a submicron ferromagnetic spin-valve
stripe is investigated using giant magnetoresistance. A notch in the stripe
efficiently traps an injected wall stopping the domain propagation. The authors
show that the magnetic field at which the wall is depinned displays a
stochastic nature. Moreover, the depinning statistics are significantly
different for head to head and tail-to-tail domain walls. This is attributed to
the dipolar field generated in the vicinity of the notch by the pinned layer of
the spin-valve
Chiral nature of magnetic monopoles in artificial spin ice
Micromagnetic properties of monopoles in artificial kagome spin ice systems
are investigated using numerical simulations. We show that micromagnetics
brings additional complexity into the physics of these monopoles that is, by
essence, absent in spin models: besides a fractionalized classical magnetic
charge, monopoles in the artificial kagome ice are chiral at remanence. Our
simulations predict that the chirality of these monopoles can be controlled
without altering their charge state. This chirality breaks the vertex symmetry
and triggers a directional motion of the monopole under an applied magnetic
field. Our results also show that the choice of the geometrical features of the
lattice can be used to turn on and off this chirality, thus allowing the
investigation of chiral and achiral monopoles.Comment: 10 pages, 4 figure
Wide range and tunable linear TMR sensor using two exchange pinned electrodes
A magnetic tunnel junction sensor is proposed, with both the detection and
the reference layers pinned by IrMn. Using the differences in the blocking
temperatures of the IrMn films with different thicknesses, crossed anisotropies
can be induced between the detection and the reference electrodes. The pinning
of the sensing electrode ensures a linear and reversible output. It also allows
tuning both the sensitivity and the linear range of the sensor. The authors
show that the sensitivity varies linearly with the ferromagnetic thickness of
the detection electrode. It is demonstrated that an increased thickness leads
to a rise of sensitivity and a reduction of the operating range
Non-universality of artificial frustrated spin systems
Magnetic frustration effects in artificial kagome arrays of nanomagnets with
out-of-plane magnetization are investigated using Magnetic Force Microscopy and
Monte Carlo simulations. Experimental and theoretical results are compared to
those found for the artificial kagome spin ice, in which the nanomagnets have
in-plane magnetization. In contrast with what has been recently reported, we
demonstrate that long range (i.e. beyond nearest-neighbors) dipolar
interactions between the nanomagnets cannot be neglected when describing the
magnetic configurations observed after demagnetizing the arrays using a field
protocol. As a consequence, there are clear limits to any universality in the
behavior of these two artificial frustrated spin systems. We provide arguments
to explain why these two systems show striking similarities at first sight in
the development of pairwise spin correlations.Comment: 7 pages, 6 figure
360 degree domain wall generation in the soft layer of magnetic tunnel junctions
High spatial resolution X-ray photo-emission electron microscopy technique
has been used to study the influence of the dipolar coupling taking place
between the NiFe and the Co ferromagnetic electrodes of micron sized,
elliptical shaped magnetic tunnel junctions. The chemical selectivity of this
technique allows to observe independently the magnetic domain structure in each
ferromagnetic electrode. The combination of this powerful imaging technique
with micromagnetic simulations allows to evidence that a 360 degree domain wall
can be stabilized in the NiFe soft layer. In this letter, we discuss the origin
and the formation conditions of those 360 degree domain walls evidenced
experimentally and numerically
Stories as personal coaching philosophy
The importance of coaches developing and articulating a personal coaching philosophy which encapsulates their values and beliefs is widely recognised. Yet it is also acknowledged that many coaches resist what appears an abstract task or find it to be of limited use in their day-to-day practice. In this paper we explore the potential of an alternative approach to developing and articulating a personal coaching philosophy: storytelling. Following a discussion of the potential of stories, we present a story written by one coach which expresses her personal philosophy in a way that is firmly rooted in her coaching practice. Storytelling approaches, we suggest, can reveal the connections between abstract/general philosophy and the personal embodied experience of coaching. We reflect on the possibilities and problems of using stories as philosophy and offer some suggestions for how coaches may be supported in developing their coaching philosophy through storytelling
Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses
Magnetization manipulation in the absence of an external magnetic field is a
topic of great interest, since many novel physical phenomena need to be
understood and promising new applications can be imagined. Cutting-edge
experiments have shown the capability to switch the magnetization of magnetic
thin films using ultrashort polarized laser pulses. In 2007, it was first
observed that the magnetization switching for GdFeCo alloy thin films was
helicity-dependent and later helicity-independent switching was also
demonstrated on the same material. Recently, all-optical switching has also
been discovered for a much larger variety of magnetic materials (ferrimagnetic,
ferromagnetic films and granular nanostructures), where the theoretical models
explaining the switching in GdFeCo films do not appear to apply, thus
questioning the uniqueness of the microscopic origin of all-optical switching.
Here, we show that two different all-optical switching mechanisms can be
distinguished; a "single pulse" switching and a "cumulative" switching process
whose rich microscopic origin is discussed. We demonstrate that the latter is a
two-step mechanism; a heat-driven demagnetization followed by a
helicity-dependent remagnetization. This is achieved by an all-electrical and
time-dependent investigation of the all-optical switching in ferrimagnetic and
ferromagnetic Hall crosses via the anomalous Hall effect, enabling to probe the
all-optical switching on different timescales.Comment: 1 page, LaTeX; classified reference number
Differential effects of inhibitory G protein isoforms on G protein-gated inwardly rectifying K+ currents in adult murine atria.
G protein-gated inwardly rectifying K+ (GIRK) channels are the major inwardly rectifying K+ currents in cardiac atrial myocytes and an important determinant of atrial electrophysiology. Inhibitory G protein α-subunits can both mediate activation via acetylcholine but can also suppress basal currents in the absence of agonist. We studied this phenomenon using whole cell patch clamping in murine atria from mice with global genetic deletion of Gαi2, combined deletion of Gαi1/Gαi3, and littermate controls. We found that mice with deletion of Gαi2 had increased basal and agonist-activated currents, particularly in the right atria while in contrast those with Gαi1/Gαi3 deletion had reduced currents. Mice with global genetic deletion of Gαi2 had decreased action potential duration. Tissue preparations of the left atria studied with a multielectrode array from Gαi2 knockout mice showed a shorter effective refractory period, with no change in conduction velocity, than littermate controls. Transcriptional studies revealed increased expression of GIRK channel subunit genes in Gαi2 knockout mice. Thus different G protein isoforms have differential effects on GIRK channel behavior and paradoxically Gαi2 act to increase basal and agonist-activated GIRK currents. Deletion of Gαi2 is potentially proarrhythmic in the atria.We thank the British Heart Foundation (RG/15/15/31742) and the Intramural
Research Program of the NIH (project Z01ES101643) for funding this research. D.M. was
supported by a grant from la Fédération Française de Cardiologie
Artificial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin Ice
Magnetic frustration effects in artificial kagome arrays of nanomagnets are
investigated using x-ray photoemission electron microscopy and Monte Carlo
simulations. Spin configurations of demagnetized networks reveal unambiguous
signatures of long range, dipolar interaction between the nanomagnets. As soon
as the system enters the spin ice manifold, the kagome dipolar spin ice model
captures the observed physics, while the short range kagome spin ice model
fails.Comment: 4 pages, 4 figures, 1 tabl
- …