164 research outputs found
Multitraits evaluation of Pakistani ecotypes of berseem clover (Trifolium alexandrinum L.) under full-irrigation and water restriction conditions
Berseem clover (Trifolium alexandrinum L.) is an important forage crop in Pakistan and many ecotypes are grown across the country. Its yield is however frequently affected by insufficient irrigation due to unavailability of water. In the present study, twenty Pakistani ecotypes of berseem clover have been evaluated in lysimeters under full irrigation and water restriction conditions. In the full irrigation treatment soil humidity was maintained at field capacity, while in the water restriction treatment water was only supplied after severe wilting and to maintain humidity in the deep profile of the soil. Assessed traits included forage yield, calculated as the sum of the biomass harvested at 70 and 110 DA days after emergence, and morpho-physiological traits. Significant effects of water restriction were noted on yield, leaf gas exchange parameters, canopy temperature and osmotic adjustment. Most morpho-physiological traits had higher broad sense heritability than forage yield, both under full irrigation and water restriction conditions. Water restriction increased genetic and phenotypic variability and heritability of most traits under study. Under these conditions forage yield was positively associated to leaf temperature and recovery rate index and, under full irrigation, to net photosynthetic rate, canopy depression temperature and leaf area. The possible use of these traits as indirect selection criteria in berseem clover breeding programs is discussed. Some ecotypes with favorable traits such as high forage yield potential, good adaptation to water restriction and aptitude to multiple harvesting have also been identified
Recommended from our members
Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra
Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato.
Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The “DMDD” potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance
Recommended from our members
Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato
Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response
Recommended from our members
What can crop stable isotopes ever do for us? An experimental perspective on using crop carbon stable isotope values for reconstructing water availability in semi-arid and arid environments
This study re-assesses and refines the use of crop carbon stable isotopes (Δ13C) to reconstruct past water availability. Durum wheat, six-row barley, and sorghum were experimentally grown at three crop growing stations in Jordan for up to three years under five different irrigation regimes: 0% (rainfall only), 40%, 80%, 100%, and 120% of the crops’ optimum water requirements. Results show large variation in carbon stable isotopes for crops that received similar amounts of water, either as absolute water input or as percentage of crop requirements. We conclude that C3 crop carbon stable isotope composition can therefore be best interpreted in terms of extremely high values showing an abundance of water versus low values indicating water-stress. Values in between these extremes are problematic and best interpreted in conjunction with other proxies. C4 crop isotopes were not found to be useful for the reconstruction of water availability
- …