15 research outputs found

    Discovery of Three Novel Cytospora Species in Thailand and Their Antagonistic Potential

    No full text
    During an ongoing research survey of saprobic fungi in Thailand, four coelomycetous strains were isolated from decaying leaves in Chiang Mai and Phitsanulok Provinces. Morphological characteristics demonstrated that these taxa are typical of Cytospora in forming multi-loculate, entostromatic conidiomata, branched or unbranched conidiophores, with enteroblastic, phialidic conidiogenous cells and hyaline, allantoid, aseptate conidia. Multiloci phylogeny of ITS, LSU, ACT, RPB2, TEF1-α and TUB2 confirmed these taxa are distinct new species in Cytospora in Cytosporaceae (Diaporthales, Sordariomycetes), viz., Cytospora chiangmaiensis, C. phitsanulokensis and C. shoreae. Cytospora chiangmaiensis has a close phylogenetic relationship with C. shoreae, while C. phitsanulokensis is sister to C. acaciae. These three novel species were also preliminary screened for their antagonistic activity against five plant pathogenic fungi: Colletotrichumfructicola, Co. siamense, Co. artocarpicola, Co. viniferum and Fusarium sambucinum. Cytospora shoreae and C. phitsanulokensis showed >60% inhibition against Co. viniferum and F. sambucinum, while C. chiangmaiensis had moderate inhibition activity against all pathogens

    Integrative Taxonomy of Novel <i>Diaporthe</i> Species Associated with Medicinal Plants in Thailand

    No full text
    During our investigations of the microfungi on medicinal plants in Thailand, five isolates of Diaporthe were obtained. These isolates were identified and described using a multiproxy approach, viz. morphology, cultural characteristics, host association, the multiloci phylogeny of ITS, tef1-α, tub2, cal, and his3, and DNA comparisons. Five new species, Diaporthe afzeliae, D. bombacis, D. careyae, D. globoostiolata, and D. samaneae, are introduced as saprobes from the plant hosts, viz. Afzelia xylocarpa, Bombax ceiba, Careya sphaerica, a member of Fagaceae, and Samanea saman. Interestingly, this is the first report of Diaporthe species on these plants, except on the Fagaceae member. The morphological comparison, updated molecular phylogeny, and pairwise homoplasy index (PHI) analysis strongly support the establishment of novel species. Our phylogeny also revealed the close relationship between D. zhaoqingensis and D. chiangmaiensis; however, the evidence from the PHI test and DNA comparison indicated that they are distinct species. These findings improve the existing knowledge of taxonomy and host diversity of Diaporthe species as well as highlight the untapped potential of these medicinal plants for searching for new fungi

    Drechslerella daliensis and D. xiaguanensis (Orbiliales, Orbiliaceae), two new nematode-trapping fungi from Yunnan, China

    No full text
    Nematode-trapping fungi are a highly specialised group in fungi and are essential regulators of natural nematode populations. At present, more than 130 species have been discovered in Zygomycota (Zoopagaceae), Basidiomycota (Nematoctonus), and Ascomycota (Orbiliaceae). Amongst them, nematode-trapping fungi in Orbiliaceae have become the research focus of carnivorous fungi due to their abundant species. During the investigation of carnivorous fungi in Yunnan, China, four fungal strains isolated from burned forest soil were identified as two new nematode-trapping species in Drechslerella (Orbiliaceae), based on multigene phylogenetic analysis and morphological characters.Drechslerella daliensis sp. nov. is characterised by its ellipsoid, 1–2-septate macroconidia, clavate or bottle-shaped, 0–1-septate microconidia and unbranched, simple conidiophores. D. xiaguanensis sp. nov. is characterised by fusiform or spindle-shaped, 2–4-septate conidia and unbranched, simple conidiophores. Both of them produce constricting rings to capture nematodes. The phylogenetic analysis, based on combined ITS, TEF1-α and RPB2 sequences, determined their placement in Drechslerella. D. daliensis forms a basal lineage closely nested with D. hainanensis (YMF1.03993). D. xiaguanensis forms a sister lineage with D. bembicodes (1.01429), D. aphrobrocha (YMF1.00119) and D. coelobrocha (FWY03-25-1)

    Antimicrobial activity of crude extracts prepared from fungal mycelia

    No full text
    Objective: To evaluate the in vitro antimicrobial property of three different partitioned extracts (petroleum ether, ethanol and water) prepared from some fungal mycelia. Methods: Seven fungal mycelia were prepared, initially extracted with acidified ethanol (0.2 mol/L HCl in 80% ethanol), yielding the raw crude extracts. The obtained extracts were then further partitioned with petroleum ether (F1), ethanol (F2) and water (F3). All the fractions were tested for antimicrobial activity using the disc diffusion assay. Results: Our data showed that all the fractions could inhibit the testing bacteria. However, the inhibitory activity was found to be dependent on (i) the fungal strains used; (ii) the solvent extracted; and (iii) the testing bacteria assayed. In general, the ethanolic extracts (F2) derived from all fungi displayed highest inhibitory activity against the testing bacteria except for Chaetomium sp. Conclusions: The findings of the present study concluded that the extracts prepared from the fungal mycelia had the bioactive compounds with antibacterial property. This study is a pioneering work and further study should be carried out for development of the new drug leads

    Novel saprobic Hermatomyces species (Hermatomycetaceae, Pleosporales) from China (Yunnan Province) and Thailand

    No full text
    During our survey of the diversity of woody litter fungi in China and Thailand, three Hermatomyces species were collected from dead woody twigs of Dipterocarpus sp. (Dipterocarpaceae) and Ehretia acuminata (Boraginaceae). Both morphology and multigene analyses revealed two taxa as new species (Hermatomyces turbinatus and H. jinghaensis) and the remaining collections as new records of H. sphaericus. Hermatomyces turbinatus is characterized by 1) dimorphic conidia, having circular to oval lenticular conidia and 2) turbinate conidia consisting of two columns with two septa composed of 2–3 cells in each column. Hermatomyces jinghaensis is characterized by dimorphic conidia, having circular to oval lenticular conidia and clavate or subcylindrical to cylindrical conidia and consisting of one or two columns with 6–8 cells in each column. Phylogenetic analyses of combined LSU, ITS, tub2, tef1-α and rpb2 sequence data supports the placement of these new taxa within Hermatomycetaceae with high statistical support

    Taxonomy and phylogeny of the novel rhytidhysteron-like collections in the Greater Mekong Subregion

    No full text
    During our survey into the diversity of woody litter fungi across the Greater Mekong Subregion, three rhytidhysteron-like taxa were collected from dead woody twigs in China and Thailand. These were further investigated based on morphological observations and multi-gene phylogenetic analyses of a combined DNA data matrix containing SSU, LSU, ITS, and tef1-α sequence data. A new species of Rhytidhysteron, R. xiaokongense sp. nov. is introduced with its asexual morph, and it is characterized by semi-immersed, subglobose to ampulliform conidiomata, dark brown, oblong to ellipsoidal, 1-septate, conidia, which are granular in appearance when mature. In addition to the new species, two new records from Thailand are reported viz. Rhytidhysteron tectonae on woody litter of Betula sp. (Betulaceae) and Fabaceae sp. and Rhytidhysteron neorufulum on woody litter of Tectona grandis (Lamiaceae). Morphological descriptions, illustrations, taxonomic notes and phylogenetic analyses are provided for all entries

    Insight into the Taxonomic Resolution of <i>Apiospora</i>: Introducing Novel Species and Records from Bamboo in China and Thailand

    No full text
    Taxonomic studies of bambusicolous fungi in China and Thailand have resulted in the collection of three fascinating saprobic coelomycetes strains. Morphology coupled with combined gene analysis of ITS, LSU, TUB2, and TEF1-α DNA sequence data showed that they belong to the genus Apiospora, family Apiosporaceae. A new species from Thailand, Apiospora mukdahanensis, and new records of A. locuta-pollinis from China are herein described. In addition, based on both morphological data coupled with phylogenetics and nomenclatural analyses, A. mori is proposed as a new combination. Maximum likelihood, maximum parsimony and Bayesian analyses were performed to clarify the phylogenetic affinities of the species obtained in this study. Newly obtained strains are compared with morphologically- and phylogenetically-related taxa. The comprehensive descriptions, illustrations, and updated phylogeny are provided and discussed for intra-and intergeneric relationships within Apiospora species

    Towards a natural classification of Botryosphaeriales

    Get PDF
    The type specimens of Auerswaldia, Auerswaldiella, Barriopsis, Botryosphaeria, Leptoguignardia, Melanops, Neodeightonia, Phaeobotryon, Phaeobotryosphaeria, Phyllachorella, Pyrenostigme, Saccharata, Sivanesania, Spencermartinsia and Vestergrenia were examined and fresh specimens of Botryosphaeriales were collected from Thailand. This material is used to provide a systematic treatment of Botryosphaeriales based on morphology and phylogeny. Two new genera, Botryobambusa and Cophinforma are introduced and compared with existing genera. Four species new to science, Auerswaldia dothiorella, A. lignicola, Botryosphaeria fusispora and Phaeobotryosphaeria eucalypti, are also described and justified. We accept 29 genera in Botryosphaeriales, with Macrovalsaria being newly placed. In the phylogenetic tree, the 114 strains of Botyrosphaeriales included in the analysis cluster into two major clades with 80 %, 96 % and 1.00 (MP, ML and BY) support, with Clade A containing the family type of Botryosphaeriaceae, and Clade B containing Phyllosticta, Saccharata and Melanops species. This group may represent Phyllostictaceae. In Clade A the taxa analyzed cluster in eight sub-clades (Clades A1-8). Clade A1 comprises three distinct subclusters corresponding to the genera Diplodia (Diplodia Clade), Neodeightonia (Neodeightonia Clade) and Lasiodiplodia (Lasiodiplodia Clade). Clade A2 clusters into three groups representing Phaeobotryosphaeria (100 %), Phaeobotryon (100 %) and Barriopsis (94 %). Clade A3 incorporates 17 strains that cluster into three well-supported genera (Dothiorella (86 %), Spencermartinsia (100 %) and Auerswaldia (63 %); the position of Macrophomina is not stable. Clade A4 is a single lineage (100 %) representing the new genus Botryobambusa. Clade A5 is a well-supported subclade incorporating Neofussicoccum. Clade A6 represents the type species of Botryosphaeria, three other Botryosphaeria species and two other genera, Neoscytalidium and Cophinforma gen. nov. Clade A7 comprises two Pseudofusicoccum species and Clade A8 has two Aplosporella species. These sub-clades may eventually require separate families but this requires analysis of a much larger dataset. Our data advances the understanding of Botryosphaeriales, there is, however, still much research to be carried out with resolution of families and genera, linkage of sexual and asexual morphs and differentiation of cryptic species.Fil: Liu, Jian Kui. Mae Fah Luang University; Tailandia. Chinese Academy of Forestry; ChinaFil: Phookamsak, Rungtiwa. Mae Fah Luang University; TailandiaFil: Doilom, Mingkhuan. Mae Fah Luang University; TailandiaFil: Wikee, Saowanee. Mae Fah Luang University; TailandiaFil: Li, Yan Mei. Chinese Academy of Forestry; ChinaFil: Ariyawansha, Hiran. Mae Fah Luang University; TailandiaFil: Boonmee, Saranyaphat. Mae Fah Luang University; TailandiaFil: Chomnunti, Putarak. Mae Fah Luang University; TailandiaFil: Dai, Dong Qin. Mae Fah Luang University; TailandiaFil: Bhat, Jayarama D.. Mae Fah Luang University; TailandiaFil: Romero, Andrea Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Zhuang, Wen Ying. Chinese Academy of Sciences; República de ChinaFil: Monkai, Jutamart. Mae Fah Luang University; TailandiaFil: Jones, E. B. Gareth. University of Malaya; MalasiaFil: Chukeatirote, Ekachai. Mae Fah Luang University; TailandiaFil: Ko Ko, Thida Win. Mae Fah Luang University; TailandiaFil: Zhao, Yong Chang. Yunnan Academy of Agricultural Science; ChinaFil: Wang,Yong. Guizhou University; ChinaFil: Hyde, Kevin D.. Chinese Academy of Forestry; China. Mae Fah Luang University; Tailandi

    Recommended names for pleomorphic genera in Dothideomycetes

    No full text
    This paper provides recommendations of one name for use among pleomorphic genera in Dothideomycetes by the Working Group on Dothideomycetes established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). A number of these generic names are proposed for protection because they do not have priority and/or the generic name selected for use is asexually typified. These include: Acrogenospora over Farlowiella; Alternaria over Allewia, Lewia, and Crivellia; Botryosphaeria over Fusicoccum; Camarosporula over Anthracostroma; Capnodium over Polychaeton; Cladosporium over Davidiella; Corynespora over Corynesporasca; Curvularia over Pseudocochliobolus; Elsinoë over Sphaceloma; Excipulariopsis over Kentingia; Exosporiella over Anomalemma; Exserohilum over Setosphaeria; Gemmamyces over Megaloseptoria; Kellermania over Planistromella; Kirschsteiniothelia over Dendryphiopsis; Lecanosticta over Eruptio; Paranectriella over Araneomyces; Phaeosphaeria over Phaeoseptoria; Phyllosticta over Guignardia; Podonectria over Tetracrium; Polythrincium over Cymadothea; Prosthemium over Pleomassaria; Ramularia over Mycosphaerella; Sphaerellopsis over Eudarluca; Sphaeropsis over Phaeobotryosphaeria; Stemphylium over Pleospora; Teratosphaeria over Kirramyces and Colletogloeopsis; Tetraploa over Tetraplosphaeria; Venturia over Fusicladium and Pollaccia; and Zeloasperisporium over Neomicrothyrium. Twenty new combinations are made: Acrogenospora carmichaeliana (Berk.) Rossman & Crous, Alternaria scrophulariae (Desm.) Rossman & Crous, Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, P. dematioidea (Bubák & Wróbl.) Rossman & K.D. Hyde, P. fugax (Wallr.) Rossman & K.D. Hyde, P. nobleae (McKenzie & D. Matthews) Rossman & K.D. Hyde, P. triseptata (Drechsler) Rossman & K.D. Hyde, Schizothyrium cryptogamum (Batzer & Crous) Crous & Batzer, S. cylindricum (G.Y. Sun et al. ) Crous & Batzer, S. emperorae (G.Y. Sun & L. Gao) Crous & Batzer, S. inaequale (G.Y. Sun & L. Gao) Crous & Batzer, S. musae (G.Y. Sun & L. Gao) Crous & Batzer, S. qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, S. tardecrescens (Batzer & Crous) Crous & Batzer, S. wisconsinense (Batzer & Crous) Crous & Batzer, Teratosphaeria epicoccoides (Cooke & Massee) Rossman & W.C. Allen, Venturia catenospora (Butin) Rossman & Crous, V. convolvularum (Ondrej) Rossman & Crous, V. oleaginea (Castagne) Rossman & Crous, and V. phillyreae (Nicolas & Aggéry) Rossman & Crous, combs. nov. Three replacement names are also proposed: Pyrenophora grahamii Rossman & K.D. Hyde, Schizothyrium sunii Crous & Batzer, and Venturia barriae Rossman & Crous noms. nov
    corecore