10 research outputs found

    An easy way to increase confidence in beta-amyloid PET evaluation

    Get PDF
    BACKGROUND: In patients with brain atrophy, it is not easy to distinguish pathologic uptake of flutemetamol (FMM) in the gray matter from nonspecific, physiologic uptake in the white matter. In this paper we suggest an easy image processing method. MATERIAL AND METHODS: The proof-of-concept study involved three patients with mild cognitive impairment and different graphical findings at FMM-PET. Two-phase FMM-PET was acquired; the early phase represented the perfusion of gray matter, while the late phase depicted the white matter and beta-amyloid load in the gray matter. The border of the gray matter was easily extracted from the early-phase images using thresholding and the isocontour “Edges” color table. The late phase was registered with the edge images of the early phase and displayed using alpha-blending. RESULTS: Early- and late-phase image fusion displayed with appropriate color tables is presented in three different cases to illustrate the added value of the suggested approach. CONCLUSIONS: Composite late-phase images with enhanced gray matter borders strongly facilitate assessment of beta-amyloid presence in the gray matter. This is especially helpful in patients with brain atrophy

    FLT-PET in previously untreated patients with low-grade glioma can predict their overall survival

    Get PDF
    BACKGROUND: Low-grade gliomas (LGG) of the brain have an uncertain prognosis, as many of them show continuous growth or upgrade over the course of time. We retrospectively investigated the role of positron emission tomography with 3’-deoxy-3’-[18F]fluorothymidine (FLT-PET) in the prediction of overall survival and event free survival in patients with untreated LGG. No such information is yet available in the literature. MATERIAL AND METHODS: Forty-one patients with previously untreated LGG underwent 55 FLT-PET investigations during their follow-up because of subjective complaints, objective worsening of clinical conditions, equivocal findings or progression on magnetic resonance imaging. The time interval before referral for neurosurgical or radiation treatment was considered to be event free survival, the interval until death as overall survival, respectively. Standardized uptake values (SUV) were measured, and a 3-point scale of subjective assessment was also applied. ROC analysis was used to define cut-off values. The log rank test was used for comparison of Kaplan-Meier survival curves. RESULTS: Eight patients (a total of 9 FLT-PET studies performed) died during follow-up. Progression leading to referral to therapy was recorded in 24 patients (a total of 33 FLT-PET studies). With a cut-off value of SUVmean = 0.236, a median overall survival of 1.007 days was observed in the test positive subgroup while median overall survival for the test negative subgroup was not achieved (p = 0.0002), hazard ratio = 17.6. Subjective assessment resulted in hazard ratio 11.5 (p = 0.0001). Only marginal significance (p=0.0562) was achieved in prediction of event free survival. CONCLUSIONS: Increased FLT uptake in previously untreated patients with LGG is a strong predictor of overall survival. On the other hand, prediction of event free survival was not successful in our cohort, probably because of high prevalence of patients who needed treatment due to symptoms caused by a space-occupying lesion without respect to the proliferative activity of the tumour

    Characterization of 46 patient-specific BCR-ABL1 fusions and detection of SNPs upstream and downstream the breakpoints in chronic myeloid leukemia using next generation sequencing

    Get PDF
    In chronic myeloid leukemia, the identification of individual BCR-ABL1 fusions is required for the development of personalized medicine approach for minimal residual disease monitoring at the DNA level. Next generation sequencing (NGS) of amplicons larger than 1000 bp simplified and accelerated a process of characterization of patient-specific BCR-ABL1 genomic fusions. NGS of large regions upstream and downstream the individual breakpoints in BCR and ABL1 genes, respectively, also provided information about the sequence variants such are single nucleotide polymorphisms

    Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase

    No full text
    PURPOSE: Here, we studied whether amplicon next-generation deep sequencing (NGS) could improve the detection of emerging BCR-ABL1 kinase domain mutations in chronic phase chronic myeloid leukemia (CML) patients under tyrosine kinase inhibitor (TKI) treatment and discussed the clinical relevance of such sensitive mutational detection. METHODS: For NGS data evaluation including extraction of biologically relevant low-level variants from background error noise, we established and applied a robust and versatile bioinformatics approach. RESULTS: Results from a retrospective longitudinal analysis of 135 samples of 15 CML patients showed that NGS could have revealed emerging resistant mutants 2-11 months earlier than conventional sequencing. Interestingly, in cases who later failed first-line imatinib treatment, NGS revealed that TKI-resistant mutations were already detectable at the time of major or deeper molecular response. Identification of emerging mutations by NGS was mirrored by BCR-ABL1 transcript level expressed either fluctuations around 0.1 %(IS) or by slight transcript level increase. NGS also allowed tracing mutations that emerged during second-line TKI therapy back to the time of switchover. Compound mutants could be detected in three cases, but were not found to outcompete single mutants. CONCLUSIONS: This work points out, that next-generation deep sequencing, coupled with a robust bioinformatics approach for mutation calling, may be just in place to ensure reliable detection of emerging BCR-ABL1 mutations, allowing early therapy switch and selection of the most appropriate therapy. Further, prospective assessment of how to best integrate NGS in the molecular monitoring and clinical decision algorithms is warranted

    Additional file 5: Figure S1. of Genotypes of SLC22A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment

    No full text
    A colormap of genotypes distribution among optimally and non-optimally responding patients to first-line imatinib treatment at 12 months. Each square illustrates each genotyped SNP for each patient. Red squares = minor allele homozygotes; pink squares = heterozygotes; white squares = major allele homozygotes; gray square = not analyzed. Figure S2. Genotype frequencies of the rs460089 and rs460271 in patients with optimal and non-optimal response to imatinib at 12 months. 1 – Initial cohort of 83 patients; 2 – An independent group of added patients. Note – the graphs illustrate frequencies of genotypes of rs460089, which exactly reflect genotypes frequencies of rs460271. Figure S3. Genotype frequencies of a. rs13180043 (SLC22A5) and b. rs1050152 (SLC22A4, exon 9) in patients with optimal and non-optimal response to imatinib at 12 months. Note – the graph a. illustrates frequencies of genotypes of rs13180043, which exactly reflect genotypes frequencies of rs4646298, rs13180169, rs1310186, and rs13180295. Figure S4. Relative mRNA levels of SLC22A4 and SLC22A5 in tested cell lines. a. Graph shows expression in all eight cell lines. b. Graph shows expression of cell lines carrying rs460089-GG_rs2631365-TC or rs460089-GC_rs2631365-TC genotypes. (DOCX 687 kb

    Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase

    No full text
    PURPOSE: Here, we studied whether amplicon next-generation deep sequencing (NGS) could improve the detection of emerging BCR-ABL1 kinase domain mutations in chronic phase chronic myeloid leukemia (CML) patients under tyrosine kinase inhibitor (TKI) treatment and discussed the clinical relevance of such sensitive mutational detection. METHODS: For NGS data evaluation including extraction of biologically relevant low-level variants from background error noise, we established and applied a robust and versatile bioinformatics approach. RESULTS: Results from a retrospective longitudinal analysis of 135 samples of 15 CML patients showed that NGS could have revealed emerging resistant mutants 2-11 months earlier than conventional sequencing. Interestingly, in cases who later failed first-line imatinib treatment, NGS revealed that TKI-resistant mutations were already detectable at the time of major or deeper molecular response. Identification of emerging mutations by NGS was mirrored by BCR-ABL1 transcript level expressed either fluctuations around 0.1 %(IS) or by slight transcript level increase. NGS also allowed tracing mutations that emerged during second-line TKI therapy back to the time of switchover. Compound mutants could be detected in three cases, but were not found to outcompete single mutants. CONCLUSIONS: This work points out, that next-generation deep sequencing, coupled with a robust bioinformatics approach for mutation calling, may be just in place to ensure reliable detection of emerging BCR-ABL1 mutations, allowing early therapy switch and selection of the most appropriate therapy. Further, prospective assessment of how to best integrate NGS in the molecular monitoring and clinical decision algorithms is warranted
    corecore