1,221 research outputs found
-to-Glueball form factor and Glueball production in decays
We investigate transition form factors of meson decays into a scalar
glueball in the light-cone formalism. Compared with form factors of to
ordinary scalar mesons, the -to-glueball form factors have the same power in
the expansion of . Taking into account the leading twist light-cone
distribution amplitude, we find that they are numerically smaller than those
form factors of to ordinary scalar mesons. Semileptonic ,
and decays are subsequently investigated. We
also analyze the production rates of scalar mesons in semileptonic decays
in the presence of mixing between scalar and glueball states. The
glueball production in meson decays is also investigated and the LHCb
experiment may discover this channel. The sizable branching fraction in , or could be a clear signal for a scalar glueball
state.Comment: 17 pages, 3 figure, revtex
Evaluation of POSSUM scoring system in patients with gastric cancer undergoing D2-gastrectomy
BACKGROUND: Risk adjustment and stratification play an important role in quality assurance and in clinical research. The Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM) is a patient risk prediction model based on 12 patient characteristics and 6 characteristics of the surgery performed. However, because the POSSUM was developed for quality assessment in general surgical units, its performance within specific subgroups still requires evaluation. The aim of the present study was to assess the accuracy of POSSUM in predicting mortality and morbidity in patients with gastric cancer undergoing D2-gastrectomy. METHODS: 137 patients with gastric cancer undergoing gastrectomy were included in this study. Detailed, standardized risk assessments and thorough documentation of the post-operative courses were performed prospectively, and the POSSUM scores were then calculated. RESULTS: The 30- and 90- day mortality rates were 3.6% (n = 5) and 5.8% (n = 8), respectively. 65.7% (n = 90) of patients had normal postoperative courses without major complications, 14.6% (n = 20) had moderate and 13.9% (n = 19) had severe complications. The number of mortalities predicted by the POSSUM-Mortality Risk Score (R1) was double the actual number of mortalities occurring in the median and high-risk groups, and was more than eight times the actual number of mortalities occurring in the low-risk group (R1 < 20%). However, the calculated R1 predicted rather well in terms of severe morbidity or post-operative death in each risk group: in predicted low risk patients the actual occurrence rate (AR) of severe morbidity or post-operative death was 14%, for predicted medium risk patients the AR was 23%, and for predicted high risk patients the AR was 50% (p < 0.05). The POSSUM-Morbidity Risk Score (R2) overestimated the risk of morbidity. CONCLUSION: The POSSUM Score may be beneficial and can be used for assessment of the peri- and post-operative courses of patients with gastric carcinoma undergoing D2-gastrectomy. However, none of the scores examined here are useful for preoperative prediction of postoperative course
TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider
The TESLA Technical Design Report Part III: Physics at an e+e- Linear
ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full
quality figures can be obtained from http://tesla.desy.de/tdr. Editors -
R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Energy dependence of Cronin momentum in saturation model for and collisions
We calculate dependence of Cronin momentum for and
collisions in saturation model. We show that this dependence is consistent with
expectation from formula which was obtained using simple dimentional
consideration. This can be used to test validity of saturation model (and
distinguish among its variants) and measure dependence of saturation
momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure
Preoperative rectal cancer staging with phased-array MR
<p>Abstract</p> <p>Background</p> <p>We retrospectively reviewed magnetic resonance (MR) images of 96 patients with diagnosis of rectal cancer to evaluate tumour stage (T stage), involvement of mesorectal fascia (MRF), and nodal metastasis (N stage).</p> <p>Our gold standard was histopathology.</p> <p>Methods</p> <p>All studies were performed with 1.5-T MR system (Symphony; Siemens Medical System, Erlangen, Germany) by using a phased-array coil. Our population was subdivided into two groups: the first one, formed by patients at T1-T2-T3, N0, M0 stage, whose underwent MR before surgery; the second group included patients at Tx N1 M0 and T3-T4 Nx M0 stage, whose underwent preoperative MR before neoadjuvant chemoradiation therapy and again 4-6 wks after the end of the treatment for the re-staging of disease.</p> <p>Our gold standard was histopathology.</p> <p>Results</p> <p>MR showed 81% overall agreement with histological findings for T and N stage prediction; for T stage, this rate increased up to 95% for pts of group I (48/96), while for group II (48/96) it decreased to 75%.</p> <p>Preoperative MR prediction of histologically involved MRF resulted very accurate (sensitivity 100%; specificity 100%) also after chemoradiation (sensitivity 100%; specificity 67%).</p> <p>Conclusions</p> <p>Phased-array MRI was able to clearly estimate the entire mesorectal fat and surrounding pelvic structures resulting the ideal technique for local preoperative rectal cancer staging.</p
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
- …