9 research outputs found
The Biomolecular Interaction Network Database and related tools 2005 update
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues
Identification of Contractile Vacuole Proteins in Trypanosoma cruzi
Contractile vacuole complexes are critical components of cell volume regulation
and have been shown to have other functional roles in several free-living
protists. However, very little is known about the functions of the contractile
vacuole complex of the parasite Trypanosoma cruzi, the
etiologic agent of Chagas disease, other than a role in osmoregulation.
Identification of the protein composition of these organelles is important for
understanding their physiological roles. We applied a combined proteomic and
bioinfomatic approach to identify proteins localized to the contractile vacuole.
Proteomic analysis of a T. cruzi fraction enriched for
contractile vacuoles and analyzed by one-dimensional gel electrophoresis and
LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of
expressed proteins of epimastigotes. We also identified different peptides that
map to at least 39 members of the dispersed gene family 1 (DGF-1) providing
evidence that many members of this family are simultaneously expressed in
epimastigotes. Of the proteins present in the fraction we selected several
homologues with known localizations in contractile vacuoles of other organisms
and others that we expected to be present in these vacuoles on the basis of
their potential roles. We determined the localization of each by expression as
GFP-fusion proteins or with specific antibodies. Six of these putative proteins
(Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter)
predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and
calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our
results demonstrate the utility of combining subcellular fractionation,
proteomic analysis, and bioinformatic approaches for localization of organellar
proteins that are difficult to detect with whole cell methodologies. The CV
localization of the proteins investigated revealed potential novel roles of
these organelles in phosphate metabolism and provided information on the
potential participation of adaptor protein complexes in their biogenesis
Functional Characterization of Intracellular Dictyostelium discoideum P2X Receptors*
Indicative of cell surface P2X ion channel activation, extracellular ATP evokes a rapid and transient calcium influx in the model eukaryote Dictyostelium discoideum. Five P2X-like proteins (dP2XA–E) are present in this organism. However, their roles in purinergic signaling are unclear, because dP2XA proved to have an intracellular localization on the contractile vacuole where it is thought to be required for osmoregulation. To determine functional properties of the remaining four dP2X-like proteins and to assess their cellular roles, we recorded membrane currents from expressed cloned receptors and generated a quintuple knock-out Dictyostelium strain devoid of dP2X receptors. ATP evoked inward currents at dP2XB and dP2XE receptors but not at dP2XC or dP2XD. β,γ-Imido-ATP was more potent than ATP at dP2XB but a weak partial agonist at dP2XE. Currents in dP2XB and dP2XE were strongly inhibited by Na+ but insensitive to copper and the P2 receptor antagonists pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid and suramin. Unusual for P2X channels, dP2XA and dP2XB were also Cl−-permeable. The extracellular purinergic response to ATP persisted in p2xA/B/C/D/E quintuple knock-out Dictyostelium demonstrating that dP2X channels are not responsible. dP2XB, -C, -D, and -E were found to be intracellularly localized to the contractile vacuole with the ligand binding domain facing the lumen. However, quintuple p2xA/B/C/D/E null cells were still capable of regulating cell volume in water demonstrating that, contrary to previous findings, dP2X receptors are not required for osmoregulation. Responses to the calmodulin antagonist calmidazolium, however, were reduced in p2xA/B/C/D/E null cells suggesting that dP2X receptors play a role in intracellular calcium signaling
Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised
Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised