62 research outputs found
Origin and Diversification of Land Plant CC-Type Glutaredoxins
Glutaredoxins (GRXs) are ubiquitous glutathione-dependent oxidoreductase enzymes implicated in redox homeostasis, particularly oxidative stress response. Three major classes of GRX genes exist, the CPYC, CGFS classes are present in all pro- and eukaryote species, whereas the CC-type class GRXs are specific to land plants. In the basal land plant Physcomitrella patens, only two CC-type GRXs are present, compared with 21 in Arabidopsis. In contrast, sizes of the CPYC and CGFS classes remained rather similar throughout plant evolution, raising the interesting question as to when the CC-type GRXs first originated and how and why they expanded during land plant evolution. Recent evidence suggests that CC-type GRXs may have been recruited during evolution into diverse plant-specific functions of flower development (ROXY1, ROXY2) and pathogenesis response (ROXY19/GRX480). In the present study, GRX genes from the genomes of a range of green algae and evolutionarily diverse land plant species were identified; Ostreococcus, Micromonas, Volvox, Selaginella, Vitis, Sorghum, and Brachypodium. Previously identified sequences from Chlamydomonas, Physcomitrella, Oryza, Arabidopsis, and Populus were integrated to generate a more comprehensive understanding of the forces behind the evolution of various GRX classes. The analysis indicates that the CC-type GRXs probably arose by diversification from the CPYC class, at a time coinciding with colonization of land by plants. This strong differential expansion of the CC-type class occurred exclusively in the angiosperms, mainly through paleopolyploidy duplication events shortly after the monocot–eudicot split, and more recently through multiple tandem duplications that occurred independently in five investigated angiosperm lineages. The presented data suggest that following duplications, subfunctionalization, and subsequent neofunctionalization likely facilitated the sequestration of land plant-specific CC-type GRXs into novel functions such as development and pathogenesis response
A Multi-Platform Flow Device for Microbial (Co-) Cultivation and Microscopic Analysis
Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM) competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-)culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms
Genesis of a Fungal Non-Self Recognition Repertoire
Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification
Genome-Wide Identification, Characterization and Phylogenetic Analysis of the Rice LRR-Kinases
LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified 309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position of the ‘xxLxLxx’ motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR domain are thought to involve in the protein-protein interaction
A Link among DNA Replication, Recombination, and Gene Expression Revealed by Genetic and Genomic Analysis of TEBICHI Gene of Arabidopsis thaliana
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed
Organization and molecular evolution of a disease-resistance gene cluster in coffee trees
<p>Abstract</p> <p>Background</p> <p>Most disease-resistance (R) genes in plants encode NBS-LRR proteins and belong to one of the largest and most variable gene families among plant genomes. However, the specific evolutionary routes of NBS-LRR encoding genes remain elusive. Recently in coffee tree (<it>Coffea arabica</it>), a region spanning the <it>S</it><sub><it>H</it></sub><it>3 </it>locus that confers resistance to coffee leaf rust, one of the most serious coffee diseases, was identified and characterized. Using comparative sequence analysis, the purpose of the present study was to gain insight into the genomic organization and evolution of the <it>S</it><sub><it>H</it></sub><it>3 </it>locus.</p> <p>Results</p> <p>Sequence analysis of the <it>S</it><sub><it>H</it></sub><it>3 </it>region in three coffee genomes, E<sup>a </sup>and C<sup>a </sup>subgenomes from the allotetraploid <it>C. arabica </it>and C<sup>c </sup>genome from the diploid <it>C. canephora</it>, revealed the presence of 5, 3 and 4 R genes in E<sup>a</sup>, C<sup>a</sup>, and C<sup>c </sup>genomes, respectively. All these R-gene sequences appeared to be members of a CC-NBS-LRR (CNL) gene family that was only found at the <it>S</it><sub><it>H</it></sub><it>3 </it>locus in <it>C. arabica</it>. Furthermore, while homologs were found in several dicot species, comparative genomic analysis failed to find any CNL R-gene in the orthologous regions of other eudicot species. The orthology relationship among the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies in the three analyzed genomes was determined and the duplication/deletion events that shaped the <it>S</it><sub><it>H</it></sub><it>3 </it>locus were traced back. Gene conversion events were detected between paralogs in all three genomes and also between the two sub-genomes of <it>C. arabica</it>. Significant positive selection was detected in the solvent-exposed residues of the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies.</p> <p>Conclusion</p> <p>The ancestral <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copy was inserted in the <it>S</it><sub><it>H</it></sub><it>3 </it>locus after the divergence between Solanales and Rubiales lineages. Moreover, the origin of most of the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies predates the divergence between <it>Coffea </it>species. The <it>S</it><sub><it>H</it></sub><it>3</it>-CNL family appeared to evolve following the birth-and-death model, since duplications and deletions were inferred in the evolution of the <it>S</it><sub><it>H</it></sub><it>3 </it>locus. Gene conversion between paralog members, inter-subgenome sequence exchanges and positive selection appear to be the major forces acting on the evolution of <it>S</it><sub><it>H</it></sub><it>3</it>-CNL in coffee trees.</p
- …