12,033 research outputs found
Splitting Sensitivity of the Ground and 7.6 eV Isomeric States of 229Th
The lowest-known excited state in nuclei is the 7.6 eV isomer of 229Th. This
energy is within the range of laser-based investigations that could allow
accurate measurements of possible temporal variation of this energy splitting.
This in turn could probe temporal variation of the fine-structure constant or
other parameters in the nuclear Hamiltonian. We investigate the sensitivity of
this transition energy to these quantities. We find that the two states are
predicted to have identical deformations and thus the same Coulomb energies
within the accuracy of the model (viz., within roughly 30 keV). We therefore
find no enhanced sensitivity to variation of the fine-structure constant. In
the case of the strong interaction the energy splitting is found to have a
complicated dependence on several parameters of the interaction, which makes an
accurate prediction of sensitivity to temporal changes of fundamental constants
problematical. Neither the strong- nor Coulomb-interaction contributions to the
energy splitting of this doublet can be constrained within an accuracy better
than a few tens of keV, so that only upper limits can be set on the possible
sensitivity to temporal variations of the fundamental constants.Comment: 4 pages, 2 figure
Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect
Since the photons that stream from QSOs alter the ionization state of the gas
they traverse, any changes to a QSO's luminosity will produce
outward-propagating ionization gradients in the surrounding intergalactic gas.
This paper shows that at redshift z~3 the gradients will alter the gas's
Lyman-alpha absorption opacity enough to produce a detectable signature in the
spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution
(~7A) spectra of a several dozen background galaxies in an R~20' field
surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be
possible to detect any order-of-magnitude changes to the QSO's luminosity over
the previous 50--100 Myr and to measure the time t_Q since the onset of the
QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr.
Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major
uncertainty, aside from cosmic variance, will be the shape and orientation of
the QSO's ionization cone. This can be determined from the data if the number
of background sources is increased by a factor of a few. The method will then
provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page
Walter Campbell:A distinguished life
An efficient and simple synthesis approach to form stable (68) Ga-labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self-assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well-defined spherical shape with a diameter of 290 +/- 50 nm. The radionuclide (68) Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these (68) Ga-nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging
The Sightline to Q2343-BX415: Clues to Galaxy Formation in a Quasar Environment
(Abridged) We have discovered a strong DLA coincident in redshift with the
faint QSO Q2343-BX415 (R = 20.2, z_em = 2.57393). Follow-up observations at
intermediate spectral resolution reveal that the metal lines associated with
this 'proximate' DLA consist of two sets of absorption components. One set is
moving towards the quasar with velocities of ~ 150-600 km/s; this gas is highly
ionized and does not fully cover the continuum source, suggesting that it is
physically close to the active nucleus. The other, which accounts for most of
the neutral gas, is blueshifted relative to the QSO, with the strongest
component at ~ -160 km/s. We consider the possibility that the PDLA arises in
the outflowing interstellar medium of the host galaxy of Q2343-BX415, an
interpretation supported by strong C IV and N V absorption at nearby
velocities, and by the intense radiation field longward of the Lyman limit
implied by the high C II*/H I ratio. If Q2343-BX415 is the main source of these
UV photons, then the PDLA is located at either ~ 8 or ~ 37 kpc from the active
nucleus. Alternatively, the absorber may be a foreground star-forming galaxy
unrelated to the quasar and coincidentally at the same redshift, but our deep
imaging and follow-up spectroscopy of the field of Q2343-BX415 has not yet
produced a likely candidate. We measure the abundances of 14 elements in the
PDLA, finding an overall metallicity of ~ 1/5 solar and a normal pattern of
relative element abundances for this metallicity. Thus, in this PDLA there is
no evidence for the super-solar metallicities that have been claimed for some
proximate, high ionization, systems.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 8
tables, 21 postscript figure
Near-Infrared Observations of the Environments of Radio Quiet QSOs at z >~ 1
We present the results of an infrared survey of QSO fields at z=0.95, 0.995
and 1.5. Each z<1 field was imaged to typical continuum limits of J=20.5,
Kprime=19 (5 sigma), and line fluxes of 1.3E10{-16}ergs/cm^2/s (1 sigma)in a 1%
interference filter. 16 fields were chosen with z~0.95 targets, 14 with z~0.995
and 6 with z~1.5. A total area of 0.05 square degrees was surveyed, and two
emission-line objects were found. We present the infrared and optical
photometry of these objects. Optical spectroscopy has confirmed the redshift of
one object (at z=0.989) and is consistent with the other object having a
similar redshift. We discuss the density of such objects across a range of
redshifts from this survey and others in the literature. We also present
number-magnitude counts for galaxies in the fields of radio quiet QSOs,
supporting the interpretation that they exist in lower density environments
than their radio loud counterparts. The J-band number counts are among the
first to be published in the J=16--20.Comment: 34 pages, including 12 figures; accepted for publication in the Ap
Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance
We investigate the properties of kappa-Minkowski spacetime by using
representations of the corresponding deformed algebra in terms of undeformed
Heisenberg-Weyl algebra. The deformed algebra consists of kappa-Poincare
algebra extended with the generators of the deformed Weyl algebra. The part of
deformed algebra, generated by rotation, boost and momentum generators, is
described by the Hopf algebra structure. The approach used in our
considerations is completely Lorentz covariant. We further use an adventages of
this approach to consistently construct a star product which has a property
that under integration sign it can be replaced by a standard pointwise
multiplication, a property that was since known to hold for Moyal, but not also
for kappa-Minkowski spacetime. This star product also has generalized trace and
cyclic properties and the construction alone is accomplished by considering a
classical Dirac operator representation of deformed algebra and by requiring it
to be hermitian. We find that the obtained star product is not translationally
invariant, leading to a conclusion that the classical Dirac operator
representation is the one where translation invariance cannot simultaneously be
implemented along with hermiticity. However, due to the integral property
satisfied by the star product, noncommutative free scalar field theory does not
have a problem with translation symmetry breaking and can be shown to reduce to
an ordinary free scalar field theory without nonlocal features and tachionic
modes and basicaly of the very same form. The issue of Lorentz invariance of
the theory is also discussed.Comment: 22 pages, no figures, revtex4, in new version comments regarding
translation invariance and few references are added, accepted for publication
in Int. J. Mod. Phys.
The Transverse Proximity Effect: A Probe to the Environment, Anisotropy, and Megayear Variability of QSOs
The transverse proximity effect is the expected decrease in the strength of
the Lya forest absorption in a QSO spectrum when another QSO lying close to the
line of sight enhances the photoionization rate above that due to the average
cosmic ionizing background. We select three QSOs from the Early Data Release of
the Sloan Digital Sky Survey that have nearby foreground QSOs, with proper line
of sight tangential separations of 0.50, 0.82, and 1.10 h^{-1} Mpc. We estimate
that the ionizing flux from the foreground QSO should increase the
photoionization rate by a factor (94, 13, 13) in these three cases, which would
be clearly detectable in the first QSO and marginally so in the other two. We
do not detect the transverse proximity effect. Three possible explanations are
provided: an increase of the gas density in the vicinity of QSOs, time
variability, and anisotropy of the QSO emission. We find that the increase of
gas density near QSOs can be important if they are located in the most massive
halos present at high redshift, but is not enough to fully explain the absence
of the transverse proximity effect. Anisotropy requires an unrealistically
small opening angle of the QSO emission. Variability demands that the
luminosity of the QSO with the largest predicted effect was much lower 10^6
years ago, whereas the transverse proximity effect observed in the HeII Lya
absorption in QSO 0302-003 by Jakobsen et al. (2003) implies a lifetime longer
than 10^7 years. A combination of all three effects may better explain the lack
of Lya absorption reduction. A larger sample of QSO pairs may be used to
diagnose the environment, anisotropy and lifetime distribution of QSOs.Comment: 27 pages, 13 figures, accepted by Ap
- …