6,076 research outputs found
Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides
In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin
degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate
treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the
optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly
accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively.
Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science
codes. However, an accurate validation and comparison of different approaches is still missing. In this work,
we go through the derivation of the noncollinear GW-BSE approach. The scheme is applied to transition
metal dichalcogenides comparing the perturbative and full spinorial approaches. Our calculations reveal that
dark-bright exciton splittings are generally improved when the spin-orbit coupling is included nonperturbatively.
The exchange-driven intravalley mixing between the A and B excitons is found to play a role for Mo-based
systems, being especially strong in the case of MoSe 2 . We finally compute the excitonic spin and use it to
sharply analyze the spinorial properties of transition metal dichalcogenide excitonic states
Survival analysis of productive life in Florida dairy goats using a Cox proportional hazards model
Longevity is an economically important trait, since extending the functional life of a doe would allow us to keep the most productive females in the herd as long as possible, and this could result in the increased profitability of dairy farms. Thus, the objectives of this study were to determine the most important factors that influence the length of productive life (LPL) of female Florida goats and to estimate its genetic additive variance using a Cox proportional hazards model. The data consisted of 70,695 productive life records from 25,722 Florida females kidding between 2006 and 2020. A total of 19,495 does had completed their productive life while 6227 (24.2%) does had censored information. The pedigree contained information on 56,901 animals. The average censoring age and average failure age after first kidding for LPL were 36 and 47 months respectively. The model included, as time-independent effects, the age at first kidding and the interaction between herd, year and season of birth of the doe, and as time-dependent effects, the age at kidding, the interaction between herd, year and season of kidding, the within-herd class of milk production deviation, and the interaction between the lactation number and the stage of lactation. All fixed effects had a significant effect on LPL (p < 0.05). Does with older ages at the first kidding and an earlier age at kidding were at higher risk of being culled. A large difference among herds was observed in terms of culling risk, which highlighted the importance of adequate management practices. Also, high-producing does were less likely to be culled. The estimate of the additive genetic variance was 1.844 (in genetic standard deviation), with a heritability estimate of 0.58 ± 0.012. The results of this study are expected to contribute to the development of a genetic model for genetic evaluation of the length of the productive life of Spanish dairy goat breeds.info:eu-repo/semantics/publishedVersio
Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride
Kohn anomalies in three-dimensional metallic crystals are dips in the phonon dispersion that are caused by abrupt changes in the screening of the ion cores by the surrounding electron gas. These anomalies are also present at the high-symmetry points Γ and K in the phonon dispersion of two-dimensional graphene, where the phonon wave vector connects two points on the Fermi surface. The linear slope around the kinks in the highest optical branch is proportional to the electron-phonon coupling. Here, we present a combined theoretical and experimental study of the influence of the dielectric substrate on the vibrational properties of graphene. We show that screening by the dielectric substrate reduces the electron-phonon coupling at the high-symmetry point K and leads to an upshift of the Raman 2D line. This results in the observation of a Kohn anomaly that can be tuned by screening. The exact position of the 2D line can thus be taken also as a signature for changes in the (electron-phonon limited) conductivity of graphene
Trajectory-Based Morphological Operators: A Model for Efficient Image Processing
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images
Gnathostomosis, an emerging foodborne zoonotic disease in Acapulco, Mexico.
Between 1993 and 1997, 98 gnathostomosis cases were clinically identified in Acapulco, Mexico. Intermittent cutaneous migratory swellings were the commonest manifestation. Larvae were identified in 26 cases, while in 72, final diagnosis was made on the basis of epidemiologic data, food habits, and positive enzyme-linked immunosorbent assay and Western blot results
Moonlighting function of Phytochelatin synthase1 in extracellular defense against fungal pathogens
Phytochelatin synthase (PCS) is a key component of heavy metal detoxification in plants. PCS catalyzes both the synthesis of the peptide phytochelatin from glutathione and the degradation of glutathione conjugates via peptidase activity. Here, we describe a role for PCS in disease resistance against plant pathogenic fungi. The pen4 mutant, which is allelic to cadmium insensitive1 (cad1/pcs1) mutants, was recovered from a screen for Arabidopsis mutants with reduced resistance to the nonadapted barley fungal pathogen Blumeria graminis f. sp. hordei. PCS1, which is found in the cytoplasm of cells of healthy plants, translocates upon pathogen attack and colocalizes with the PEN2 myrosinase on the surface of immobilized mitochondria. pcs1 and pen2 mutant plants exhibit similar metabolic defects in the accumulation of pathogen-inducible indole glucosinolate-derived compounds, suggesting that PEN2 and PCS1 act in the same metabolic pathway. The function of PCS1 in this pathway is independent of phytochelatin synthesis and deglycination of glutathione conjugates, as catalytic-site mutants of PCS1 are still functional in indole glucosinolate metabolism. In uncovering a peptidase-independent function for PCS1, we reveal this enzyme to be a moonlighting protein important for plant responses to both biotic and abiotic stresses
Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs
Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens
Respirometric assessment of bacterial kinetics in algae-bacteria and activated sludge processes
Algae-bacteria (AB) consortia can be exploited for effective wastewater treatment, based on photosynthetic oxygenation to reduce energy requirements for aeration. While algal kinetics have been extensively evaluated, bacterial kinetics in AB systems are still based on parameters taken from the activated sludge models, lacking an experimental validation for AB consortia. A respirometric procedure was therefore proposed, to estimate bacterial kinetics in both activated sludge and AB, under different conditions of temperature, pH, dissolved oxygen, and substrate availability. Bacterial activities were differently influenced by operational/environmental conditions, suggesting that the adoption of typical activated sludge parameters could be inadequate for AB modelling. Indeed, respirometric results show that bacteria in AB consortia were adapted to a wider range of conditions, compared to activated sludge, confirming that a dedicated calibration of bacterial kinetics is essential for effectively modelling AB systems, and respirometry was proven to be a powerful and reliable tool to this purpose
- …