234 research outputs found
EU Marine Beach Litter Baselines
Measures against marine litter require quantitative data for the assessment of litter abundance, trends and distribution. While beach litter monitoring has been ongoing in some European areas since years, so far it was yet not possible to obtain an overview and to analyse litter abundance, litter category distribution and trends at the different spatial scales from local to EU.
Therefore, the EU Marine Directors and the Marine Strategy Coordination Group mandated, in the context of the MSFD implementation, to the MSFD Technical Group on Marine Litter and the JRC, the compilation and analysis of an EU beach litter dataset. Aim was to derive EU Marine Beach Litter Baselines at different spatial levels. After collection of European beach litter data from EU Member States via the EMODNET chemistry module database, harmonisation of data formats, clean-up a 2012-2016 dataset was derived. Following the spatio-temporal aggregation of data and the identification of possible litter category analysis, different scenarios for baseline setting have been tested and evaluated.
The application of agreed scenario parameters has enabled the calculation of marine beach litter baselines for the years 2015 and 2016 at spatial scales ranging from country and country âregion level to sub-regional, regional and EU level. Litter categories have been aggregated and allow analysis of group categories up to EU level, whereas the analysis of single categories could not include all received data due to non-comparable litter type category descriptions.
The resulting set of baselines enables the future monitoring of progress in reduction, as well as compliance checking developed using the dataset. Furthermore, it provides valuable information for future improving harmonised monitoring through updated guidance, common data treatment and agreed data reporting formats.
Beach litter abundance has been found to be very high in large areas of Europe, requiring joint and strong action in Europe and with the neighbours in shared marine basins.JRC.D.2-Water and Marine Resource
Toward the integrated marine debris observing system
Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of this anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt⟠, W+bb⟠and W+cc⟠is studied in the forward region of protonâproton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fbâ1 . The W bosons are reconstructed in the decays WââÎœ , where â denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era
The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2Ă1034
cmâ2sâ1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b â sl+lâand b â dl+lâ transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 â ÎŒ+ÎŒâ)/B(Bs â ÎŒ+ÎŒâ). Probing charm CP violation at the 10â5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
Observation of the B0 â Ï0Ï0 decay from an amplitude analysis of B0 â (Ï+Ïâ)(Ï+Ïâ) decays
Protonâproton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fbâ1 , are analysed to search for the charmless B0âÏ0Ï0 decay. More than 600 B0â(Ï+Ïâ)(Ï+Ïâ) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0âÏ0Ï0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0âÏ0Ï0 decays yielding a longitudinally polarised final state is measured to be fL=0.745â0.058+0.048(stat)±0.034(syst) . The B0âÏ0Ï0 branching fraction, using the B0âÏKâ(892)0 decay as reference, is also reported as B(B0âÏ0Ï0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))Ă10â6
Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar
The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c.The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7Â fb , and at using 2.0Â fb . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be .The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c
Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state
A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation
Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region
An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions.An angular analysis of the B â K^{*}^{0} e e decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q) interval between 0.002 and 1.120 GeV /c. The angular observables F and A which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be F = 0.16 ± 0.06 ± 0.03 and A â=â0.10â±â0.18â±â0.05, where the first uncertainty is statistical and the second systematic. The angular observables A and A which are sensitive to the photon polarisation in this q range, are found to be A â=âââ0.23â±â0.23â±â0.05 and A â=â0.14â±â0.22â±â0.05. The results are consistent with Standard Model predictions.An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions
- âŠ