197 research outputs found

    Non-Structural Masonry Walls Strengthened With Gfrp Laminates

    Get PDF
    One of the major construction systems in Colombia, and in general throughout Latin America, consists of multistory moment resisting reinforced concrete (RC) frames filled with unreinforced masonry (URM) walls. These non-structural masonry walls are conventionally built using clay tiles. Due to the high seismic activity in Colombia, this kind of masonry wall is prone to damage. One of the alternatives being explored in Colombia to prevent the failure or lessen the damages in clay tile URM walls is to strengthen them with Glass Fiber Reinforced Polymer (GFRP) laminates. This paper presents promising results of experimental tests conducted on twenty-six wallettes of 9x70x70 cm and 9x120x120 cm, which were strengthened with different layouts of GFRP laminates. In addition, a full-scale wall was tested to validate the technology. The paper discusses the effect of GFRP laminates on the failure mechanisms, capacity and ductility parameters as well as on the overall reduction of earthquake damage for clay tile URM walls

    Post-field grinding evaluation of different rail grades in full-scale wheel/rail laboratory tests

    Get PDF
    Rail grinding is a maintenance task performed in the field to return it to profile and/or remove damage, however, it can affect the surface integrity of the rail. In this paper, the damage resistance of three different ground rails (R260, R350HT and R400HT) was evaluated. Rail samples were ground using the same parameters in a low-traffic line in the field. The rail metallurgy was then examined, and white etching layer (WEL) formation was evaluated. The resistance to wear and rolling contact fatigue (RCF) was studied in a Full-Scale Rig (FSR). Cracking was detected and, in some cases, WEL was found pressed into the pearlitic microstructure whereas in others the bonding between the WEL and the pearlite failed leading to delamination

    Vacuum fluctuations and topological Casimir effect in Friedmann-Robertson-Walker cosmologies with compact dimensions

    Full text link
    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massless scalar field with general curvature coupling parameter in spatially flat Friedmann-Robertson-Walker universes with an arbitrary number of toroidally compactified dimensions. The topological parts in the expectation values are explicitly extracted and in this way the renormalization is reduced to that for the model with trivial topology. In the limit when the comoving lengths of the compact dimensions are very short compared to the Hubble length, the topological parts coincide with those for a conformal coupling and they are related to the corresponding quantities in the flat spacetime by standard conformal transformation. In the opposite limit of large comoving lengths of the compact dimensions, in dependence of the curvature coupling parameter, two regimes are realized with monotonic or oscillatory behavior of the vacuum expectation values. In the monotonic regime and for nonconformally and nonminimally coupled fields the vacuum stresses are isotropic and the equation of state for the topological parts in the energy density and pressures is of barotropic type. In the oscillatory regime, the amplitude of the oscillations for the topological part in the expectation value of the field squared can be either decreasing or increasing with time, whereas for the energy-momentum tensor the oscillations are damping.Comment: 20 pages, 2 figure

    Recent morpho-sedimentary processes in Dove Basin, southern Scotia Sea, Antarctica: A basin-scale case of interaction between bottom currents and mass movements

    Get PDF
    Multibeam bathymetric imagery and acoustic sub-bottom profiles are used to reveal distribution patterns of sub-surface sedimentation in Dove Basin (Scotia Sea). The goals of the study are to determine the imprint of the inflow of deep Antarctic water masses from the Weddell Sea into the Scotia Sea, to establish the factors driving the styles of contourite deposition and to discern the relative contribution of alongslope versus downslope processes to the construction of the uppermost late Quaternary sedimentary record in the basin. The most significant morpho-sedimentary features in Dove Basin are linked to contouritic processes and to mass movements. Plastered drifts on the flanks of the basin constitute the most common contouritic deposits. Basement-controlled drifts on top of structural elevations are common along the central ridge, the central basin plain and scattered along the basin flanks. Sheeted drifts occur on top of adjacent banks or are restricted to the deep basin. In contrast, mounded drifts are poorly represented in Dove basin. A laterally extensive contouritic channel runs along the central ridge. Contouritic channels are also identified in the upper parts of the lateral banks and slopes. Numerous slide scars along the upper parts of the slopes evolve downslope into semitransparent lens-shaped bodies, with occasional development of across-slope channels. Semitransparent lenses occur intercalated within stratified deposits in the slopes of the basin, in the central ridge and in the deepest basin plain. The spatial arrangement of contouritic morphologies points to the influence of the water column structure and the basin physiography. In the eastern sub-basin, two different fractions (lower and upper) of Weddell Sea Deep Water (WSDW) leave an imprint on contourite deposits owing to the sloping interface between the two fractions. Contouritic influence is more subdued in the western sub-basin, and limited to the imprint of the lower WSDW. The upper parts of the surrounding banks are under the influence of deep-reaching Circumpolar waters (i.e., Lower Circumpolar Deep Water), which develops both depositional and erosional morphologies. The cross-section V-shaped morphology of the basin and the common occurrence of structural highs drive the predominance of plastered and basement-controlled drifts in the sediment record. The frequent alternation between contourites and downslope gravity-flow deposits is likely due to different processes associated with over-steepening in the basin, such as basement-controlled steep slopes, deformed drifts atop basement elevations, and the development of thick contouritic piles. Dove Basin is an example of a basin without mounded, plastered or mixed hybrid drifts in the transition between the lower slope and the deep basin, because the upper boundary of the deepest water mass —the Weddell Sea Deep Water— flows shallower along the middle slope. This fact underlines the relevance of the position and depth of water masses in shaping the morphology of the feet of slopes along continental margins

    Energy-Momentum Tensor of Particles Created in an Expanding Universe

    Get PDF
    We present a general formulation of the time-dependent initial value problem for a quantum scalar field of arbitrary mass and curvature coupling in a FRW cosmological model. We introduce an adiabatic number basis which has the virtue that the divergent parts of the quantum expectation value of the energy-momentum tensor are isolated in the vacuum piece of , and may be removed using adiabatic subtraction. The resulting renormalized is conserved, independent of the cutoff, and has a physically transparent, quasiclassical form in terms of the average number of created adiabatic `particles'. By analyzing the evolution of the adiabatic particle number in de Sitter spacetime we exhibit the time structure of the particle creation process, which can be understood in terms of the time at which different momentum scales enter the horizon. A numerical scheme to compute as a function of time with arbitrary adiabatic initial states (not necessarily de Sitter invariant) is described. For minimally coupled, massless fields, at late times the renormalized goes asymptotically to the de Sitter invariant state previously found by Allen and Folacci, and not to the zero mass limit of the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ from zero, but satisfy m^2+xi R=0, the energy density and pressure of the scalar field grow linearly in cosmic time demonstrating that, at least in this case, backreaction effects become significant and cannot be neglected in de Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure

    RFID together with multi-agent systems to control global value chains

    Get PDF
    Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident

    Single-cell Atlas of common variable immunodeficiency shows germinal center-associated epigenetic dysregulation in B-cell responses

    Get PDF
    Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes
    corecore