1,327 research outputs found

    Time variable cosmological constant of holographic origin with interaction in Brans-Dicke theory

    Full text link
    Time variable cosmological constant (TVCC) of holographic origin with interaction in Brans-Dicke theory is discussed in this paper. We investigate some characters for this model, and show the evolutions of deceleration parameter and equation of state (EOS) for dark energy. It is shown that in this scenario an accelerating universe can be obtained and the evolution of EOS for dark energy can cross over the boundary of phantom divide. In addition, a geometrical diagnostic method, jerk parameter is applied to this model to distinguish it with cosmological constant.Comment: 10 pages, 9 figure

    Isolation and characterisation of the first microsatellite markers for \u3ci\u3eCyperus rotundus\u3c/i\u3e

    Get PDF
    This is the first report of microsatellite markers for Cyperus rotundus. A total of 191 sequence-specific microsatellite markers were isolated and used to screen12 accessions of C. rotundus and one accession of Cyperus esculentus collected from 10 different countries. Polymorphisms were observed in 49% of the markers tested, 22% of the markers were monomorphic and 29% had weak or no amplification. The best 57 markers are reported, and cluster analysis was used to analyse their resolving power. BLASTx screening of the contig sequences was also performed. Multiallelic loci over all samples ranged from 24% to 60%. The maximum number of alleles detected by the markers suggests a polyploidy nature of all C. rotundus accessions tested, except for the sample N25-Brazil. Chromosome number was determined for N12-Taiwan and used as an internal flow cytometry standard to estimate the amount of DNA within haploid nuclei of the remaining material. Chromosome numbers estimated for C. rotundus were 16 and 24. The markers identified in this study can be used for the identification of biotypes and detection of potential crosses of C. rotundus, to implement management practices for the effective control of this weed

    Optimization of electrophoretic deposition technique to control doping and densification of protective spinel coatings for SOC interconnects

    Get PDF
    Manganese cobaltite spinel coatings have been reported to limit oxidation and Cr-evaporation from ferritic stainless steel interconnects in solid oxide cell stacks; however, the implementation of the functional properties of the base Mn–Co spinel coating and compatibility with the substrate can be pursued through the optimisation of the coating composition, as well as the deposition method and sintering profile. Electrophoretic deposition (EPD) allows to deposit homogeneous layers in few seconds on complexly shaped steel components; it also offers the possibility to produce in-situ doped coatings, avoiding time and energy consuming multi-step processes. In this work, various EPD suspensions are optimised to achieve a single step co-deposition of CuO, Fe2O3 and Mn1,5Co1,5O4 on Crofer 22 APU. Different Fe-Cu doped Mn–Co spinel are successfully obtained by controlling the precursors amount in the EPD suspension and subsequent reactive sintering, as proved by detailed SEM and TEM analyses. Improved functional properties of produced coatings are evaluated in terms of oxidation kinetics and area specific resistance. Both the iron and copper amount in the coating and the sintering process significantly influence the coating densification, with benefits to the protective properties and thermomechanical compatibility with the interconnect

    Bacteriocin-mediated competition in cystic fibrosis lung infections

    Get PDF
    Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections

    Quiescence: early evolutionary origins and universality do not imply uniformity

    Get PDF
    Cell cycle investigations have focused on relentless exponential proliferation of cells, an unsustainable situation in nature. Proliferation of cells, whether microbial or metazoan, is interrupted by periods of quiescence. The vast majority of cells in an adult metazoan lie quiescent. As disruptions in this quiescence are at the foundation of cancer, it will be important for the field to turn its attention to the mechanisms regulating quiescence. While often presented as a single topic, there are multiple forms of quiescence each with complex inputs, some of which are tied to conceptually challenging aspects of metazoan regulation such as size control. In an effort to expose the enormity of the challenge, I describe the differing biological purposes of quiescence, and the coupling of quiescence in metazoans to growth and to the structuring of tissues during development. I emphasize studies in the organism rather than in tissue culture, because these expose the diversity of regulation. While quiescence is likely to be a primitive biological process, it appears that in adapting quiescence to its many distinct biological settings, evolution has diversified it. Consideration of quiescence in different models gives us an overview of this diversity
    corecore