133 research outputs found
Bovine Colostrum Supplementation and Bone Health: a Pilot Study
Research has shown the positive effects of some bovine colostrum components in bone cells; for instance, lactoferrin is reported to stimulate osteoblast proliferation and inhibit osteoclast activity in cell cultures. However, whether bovine colostrum as a whole can induce bone mass gains in osteoporotic bones is relatively unclear. The aim of this study was to investigate the effects of bovine colostrum supplementation in ovariectomized-induced bone loss (OVX) rats. Methods: Twenty-seven-month-old female Wister rats (n=16) were randomly assigned to the following two groups: 1) a healthy control (non-OVX) with no supplementation, and 2) a OVX with bovine colostrum supplementation (0.5g/day; oral consumption). After 5 months supplementation, bone microstructure was scanned using micro-CT (right tibia). Bone formation markers (serum: pre-and post supplementation) were analysed (alkaline phosphatase and osteocalcin) by ECLIA. The study was approved by the National Ethics Committee for the Use of Animals in Research (ORBEA). Results: No significant differences were found between groups in serum alkaline phosphatase either before or after supplementation (p>0.05). Serum osteocalcin significantly increased post-supple-mentation in the OVX compared to pre-supplementation (pre: 11.32+/-1.61; post: 12.45+/-1.21μg/L, p0.05). Trabecular bone mineral content (BMC), trabecular thickness, cortical bone mineral density (BMD) and cortical BMC were similar between groups after supplementation (p>0.05). However, OVX group revealed significantly higher trabecular porosity (5.6%, p<0.01), trabecular separation (36.3%, p<0.01), and cortical porosity (8.0%, p<0.01) compared to the healthy control post-supplementation. Conclusion: Bovine colostrum seems to preserve bone mass of OVX by stimulating bone formation. However, these positive effects seem not to be sufficient to restore bone micro-architecture in the OVX group, possibly because the administrated dose of bovine colostrum was not sufficient for OVX to catch-up healthy rats in terms of trabecular and cortical porosity. The potential therapeutic use of bovine colostrum for osteoporosis deserves further investigation
Allosteric modulation of protein kinase A in individuals affected by NLPD-PKA, a neurodegenerative disease in which the PRKAR1B L50R variant is expressed
Protein kinase A (PKA) is a crucial signaling enzyme in neurons, with its dysregulation being implicated in neurodegenerative diseases. Assembly of the PKA holoenzyme, comprising a dimer of heterodimers of regulatory (R) and catalytic (C) subunits, ensures allosteric regulation and functional specificity. Recently, we defined the RI beta-L50R variant as a causative mutation that triggers protein aggregation in a rare neurodegenerative disease, neuronal loss, and parkinsonism driven by a PKA mutation (NLPD-PKA). However, the mechanism underlying uncontrolled PKA allosteric regulation and its connection to the functional outcomes leading to clinical symptoms remains elusive. In this study, we established an in vitro model using patient-derived cells for a personalized approach and employed direct measurements of purified proteins to investigate disease mechanisms in a controlled environment. Structural analysis and circular dichroism spectroscopy revealed that cellular protein aggregation resulted from misfolded RI beta-subunits, preventing holoenzyme assembly and anchoring through A-kinase anchoring proteins (AKAPs). While maintaining high affinity to the C-subunit, the resulting RI beta-L50R:C heterodimer exhibits reduced cooperativity, requiring lower cAMP concentrations for dissociation. Consequently, there was an increased translocation of the C-subunit into the nucleus, impacting gene expression. We successfully controlled C-subunit translocation by introducing a mutation that decreased RI beta:C dissociation in response to elevated cAMP levels. This research thus sets the stage for developing therapeutic strategies that modulate PKA assembly and allostery, thus exerting control over the unique molecular signatures identified in the disease-associated transcriptome profile
Somatic TARDBP variants as a cause of semantic dementia
The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants in neurodegenerative disease. Semantic dementia is characterized by a non-familial occurrence, early onset (<65 years), focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural progenitor cells during brain development might lead to semantic dementia, we compared deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia cases. Somatic variants observed in brain tissue and absent in blood were validated using amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two semantic dementia brains, respectively. The pathogenicity of both variants is supported by demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization of the mutant TDP-43 protein. These findings indicate that somatic variants may cause semantic dementia as a non-hereditary neurodegenerative disease, which might be exemplary for other late-onset neurodegenerative disorders
A mutation in the <i>PRKAR1B </i>gene drives pathological mechanisms of neurodegeneration across species
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RI beta subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown.In this study, we generated a mouse model carrying the RI beta-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration.We reveal that RI beta is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RI beta-L50R mouse model. We define RI beta-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RI beta dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RI beta-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RI beta-L50R aggregation.The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.The PRKAR1B gene encodes a regulatory subunit of protein kinase A. Benjamin-Zukerman et al. generate a mouse model harbouring a variant in PRKAR1B previously detected in patients with a rare neurodegenerative disease, and identify the molecular mechanisms driving the disease phenotype
<i>UNC13A</i> Polymorphism Influences Survival in Patients with Frontotemporal Dementia
UNC13A (rs12608932-CC) is associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), and shortens survival in ALS. We aim to describe the association for UNC13A and survival in FTD. We included 626 patients with FTD from Dutch memory clinics, including a subcohort of 150 patients with TDP-43 pathology. Survival analyses were performed using Cox proportional hazard models in a recessive manner. Homozygosity for rs12608932-C in UNC13A was associated with a shorter survival compared with other genotypes (hazard ratio [HR] = 1.28, 95% confidence interval [CI] = 1.02–1.60, p = 0.033), which has implications for patient counselling and trial design. ANN NEUROL 2025;97:1062–1066.</p
Genome-wide association study of frontotemporal dementia identifies a <i>C9ORF72</i> haplotype with a median of 12-G4C2 repeats that predisposes to pathological repeat expansions
Genetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients (including and excluding N = 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were strongly associated with FTD in the discovery (rs147211831: OR = 4.8, P = 9.2 × 10−9, rs117204439: OR = 4.9, P = 6.0 × 10−9) and replication analysis (P < 1.1 × 10−3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder haplotypes without one of the two risk variants (~22% versus ~2%; P = 7.70 × 10−58). In haplotypes without a pathologic expansion, the founder risk haplotype had a higher number of repeats (median = 12 repeats) compared to the founder haplotype without the risk variants (median = 8 repeats) (P = 2.05 × 10−260). In conclusion, the identified risk haplotype, which is carried by ~4% of all individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.</p
Brain transcriptomics highlight abundant gene expression and splicing alterations in non-neuronal cells in aFTLD-U
Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U) is a rare cause of frontotemporal lobar degeneration (FTLD), characterized postmortem by neuronal inclusions of the FET family of proteins (FTLD-FET). The recent discovery of TAF15 amyloid filaments in aFTLD-U brains represents a significant step toward improved diagnostic and therapeutic strategies. However, our understanding of the etiology of this FTLD subtype remains limited, which severely hampers translational research efforts. To explore the transcriptomic changes in aFTLD-U, we performed bulk RNA sequencing on the frontal cortex tissue of 21 aFTLD-U patients and 20 control individuals. Cell-type deconvolution revealed loss of excitatory neurons and a higher proportion of astrocytes in aFTLD-U relative to controls. Differential gene expression and co-expression network analysis, adjusted for the shift in cell-type proportions, showed dysregulation of mitochondrial pathways, transcriptional regulators, and upregulation of the Sonic hedgehog (Shh) pathway, including the GLI1 transcription factor, in aFTLD-U. Overall, oligodendrocyte and astrocyte-enriched genes were significantly over-represented among the differentially expressed genes. Differential splicing analysis confirmed the dysregulation of non-neuronal cell types with significant splicing alterations, particularly in oligodendrocyte-enriched genes, including myelin basic protein (MBP), a crucial component of myelin. Immunohistochemistry in frontal cortex brain tissue also showed reduced myelin levels in aFTLD-U patients compared to controls. Together, these findings highlight a central role for glial cells, particularly astrocytes and oligodendrocytes, in the pathogenesis of aFTLD-U, with disruptions in mitochondrial activity, RNA metabolism, Shh signaling, and myelination as possible disease mechanisms. This study offers the first transcriptomic insight into aFTLD-U and presents new avenues for research into FTLD-FET.</p
Methylome analysis of FTLD patients with TDP-43 pathology identifies epigenetic signatures specific to pathological subtypes
Background:In the last decade, the importance of DNA methylation in the functioning of the central nervous system has been highlighted through associations between methylation changes and differential expression of key genes involved in aging and neurodegenerative diseases. In frontotemporal lobar degeneration (FTLD), aberrant methylation has been reported in causal disease genes including GRN and C9orf72; however, the genome-wide contribution of epigenetic changes to the development of FTLD remains largely unexplored. Methods: We performed reduced representation bisulfite sequencing of matched pairs of post-mortem tissue from frontal cortex (FCX) and cerebellum (CER) from pathologically confirmed FTLD patients with TDP-43 pathology (FTLD-TDP) further divided into five subtypes and including both sporadic and genetic forms (N = 25 pairs per group), and neuropathologically normal controls (N = 42 pairs). Case-control differential methylation analyses were performed, both at the individual CpG level, and in regions of grouped CpGs (differentially methylated regions; DMRs), either including all genomic locations or only gene promoters. Gene Ontology (GO) analyses were then performed using all differentially methylated genes in each group of sporadic patients. Finally, additional datasets were queried to prioritize candidate genes for follow-up. Results: Using the largest FTLD-TDP DNA methylation dataset generated to date, we identified thousands of differentially methylated CpGs (FCX = 6,520; CER = 7,134) and several hundred DMRs in FTLD-TDP brains (FCX = 134; CER = 219). Of these, less than 10% are shared between pathological subgroups. Combining additional datasets, we identified, validated and replicated hypomethylation of CAMTA1 in TDP-A potentially also impacting additional genes in the locus. GO analysis further implicated DNA methylation in myelination and developmental processes, as well as important disease-relevant mechanisms with subtype specificity such as protein phosphorylation and DNA damage repair in TDP-A, cholesterol biosynthesis in TDP-B, and protein localization in TDP-C.Conclusions: We identify methylation changes in all FTLD-TDP patient groups and show that most changes are unique to a specific pathological FTLD-TDP subtype, suggesting that these subtypes not only have distinct transcriptomic and genetic signatures, but are also epigenetically distinct. Our study constitutes an invaluable resource to the community and highlights the need for further studies to profile additional epigenetic layers within each FTLD-TDP pathological subtype.</p
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≥3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
Deciphering distinct genetic risk factors for FTLD-TDP pathological subtypes via whole-genome sequencing.
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 patients and 3,153 controls compiled from 26 institutions/brain banks in North America, Europe and Australia, and meta-analysis with the Dementia-seq cohort. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyzes, we further identify genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified C3AR1, SMG8, VIPR1, RBPJL, L3MBTL1 and ANO9, as novel subtype-specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signaling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications
- …
