10 research outputs found

    An ALE method for simuations of elastic surfaces in flow

    Get PDF
    Die Dynamik von elastischen Membranen, Kapseln und Schalen hat sich zu einem aktiven Forschungsgebiet in der simulationsgestĂŒtzten Physik und Biologie entwickelt. Die dĂŒnne OberflĂ€che dieser elastischen Materialien ermöglicht es, sie effizient als HyperflĂ€che zu approximieren. Solche OberflĂ€chen reagieren auf Dehnungen in OberflĂ€chenrichtung und Verformungen in Normalenrichtung mit einer elastischen Kraft. ZusĂ€tzlich können OberflĂ€chenspannungskrĂ€fte auftreten. In dieser Arbeit prĂ€sentieren wir eine neuartige Arbitrary Lagrangian-Eulerian (ALE) Methode um solche in (Navier-Stokes) Fluiden eingebetteten elastischen Schalen zu simulieren. Dadurch, dass das Gitter an die elastische OberflĂ€che angepasst ist, kombiniert die vorgeschlagene Methode hohe Genauigkeit mit Effizienz in der Berechnung der Lösungen. Folglich kann man die Simulationen mit einer verhĂ€ltnismĂ€ĂŸig geringen Gitterauflösung durchfĂŒhren. Der Fokus dieser Arbeit liegt bei achsensymmetrischen Formen und Strömungen, wie sie bei vielen biophysikalischen Anwendungen zu finden sind. Neben einer allgemeinen dreidimensionalen Beschreibung formulieren wir achsensymmetrische KrĂ€fte auf der OberflĂ€che, fĂŒr welche wir eine Diskretisierung mit der Finite Differenzen Methode vorschlagen, welche an eine Finite-Elemente Methode fĂŒr die umgebenden Fluide gekoppelt ist. Weiterhin entwickeln wir eine Strategie zur impliziten Kopplung der KrĂ€fte, um Zeitschrittrestriktionen zu reduzieren. In verschiedenen numerischen Tests werden wir zeigen, dass akkurate Ergebnisse schon in einer GrĂ¶ĂŸenordnung von Minuten auf einer Single-Core CPU erreicht werden können. Die Methode wurde in drei aktuellen Anwendungen verwendet, wobei mindestens zwei davon nach unserer Kenntnis im Moment mit keiner anderen numerischen Methode simuliert werden können: ZunĂ€chst prĂ€sentieren wir Simulationen von biologischen Zellen, die im Zuge eines RT-DC (Real-Time Deformability Cytometry) Experiments durch einen schmalen mikrofluidischen Kanal advektiert und dabei verformt werden. Danach zeigen wir die Ergebnisse erster Simulationen der uniaxialen Kompression biologischer Zellen zwischen zwei parallelen Platten im Zuge eines AFM Experiments. Schließlich prĂ€sentieren wir Resultate erster Simulationen von neuartigen mikroschwimmenden Schalen, welche lediglich durch Ă€ußere EinflĂŒsse (wie z.B. Ultraschall), zum Schwimmen angeregt werden können.The dynamics of membranes, shells, and capsules in fluid flow has become an active research area in computational physics and computational biology. The small thickness of these elastic materials enables their efficient approximation as a hypersurface, which exhibits an elastic response to in-plane stretching and out-of-plane bending, possibly accompanied by a surface tension force. In this work, we present a novel arbitrary Lagrangian-Eulerian (ALE) method to simulate such elastic surfaces immersed in Navier-Stokes fluids. The method combines high accuracy with computational efficiency, since the grid is matched to the elastic surface and can therefore be resolved with relatively few grid points. The focus of this work is on axisymmetric shapes and flow conditions, which are present in a wide range of biophysical problems. Next to a general three-dimensional description, we formulate axisymmetric elastic surface forces and propose a discretization with surface finite-differences coupled to evolving finite elements. We further develop an implicit coupling strategy to reduce time step restrictions. Several numerical test cases show that accurate results can be achieved at computational times on the order of minutes on a single core CPU. Three state-of-the-art applications are demonstrated, where to our knowledge at least two of them cannot be simulated with any other numerical method so far. First, simulations of biological cells being advected through a microfluidic channel and therefore being deformed during an RT-DC (Real-Time Deformability Cytometry) experiment are presented. Then, the uniaxial compression of the cortex of a biological cell during an AFM experiment is investigated. Finally, we present the results of first simulations of the observed shape oscillations of novel microswimming shells which can be locomoted by exterior influences (e.g. ultrasound waves) only

    A simulation method for the wetting dynamics of liquid droplets on deformable membranes

    Full text link
    Biological cells utilize membranes and liquid-like droplets, known as biomolecular condensates, to structure their interior. The interaction of droplets and membranes, despite being involved in several key biological processes, is so far little understood. Here, we present a first numerical method to simulate the continuum dynamics of droplets interacting with deformable membranes via wetting. The method combines the advantages of the phase-field method for multi-phase flow simulation and the arbitrary Lagrangian-Eulerian (ALE) method for an explicit description of the elastic surface. The model is thermodynamically consistent, coupling bulk hydrodynamics with capillary forces, as well as bending, tension, and stretching of a thin membrane. The method is validated by comparing simulations for single droplets to theoretical results of shape equations, and its capabilities are illustrated in 2D and 3D axisymmetric scenarios

    An ALE method for simuations of elastic surfaces in flow

    No full text
    Die Dynamik von elastischen Membranen, Kapseln und Schalen hat sich zu einem aktiven Forschungsgebiet in der simulationsgestĂŒtzten Physik und Biologie entwickelt. Die dĂŒnne OberflĂ€che dieser elastischen Materialien ermöglicht es, sie effizient als HyperflĂ€che zu approximieren. Solche OberflĂ€chen reagieren auf Dehnungen in OberflĂ€chenrichtung und Verformungen in Normalenrichtung mit einer elastischen Kraft. ZusĂ€tzlich können OberflĂ€chenspannungskrĂ€fte auftreten. In dieser Arbeit prĂ€sentieren wir eine neuartige Arbitrary Lagrangian-Eulerian (ALE) Methode um solche in (Navier-Stokes) Fluiden eingebetteten elastischen Schalen zu simulieren. Dadurch, dass das Gitter an die elastische OberflĂ€che angepasst ist, kombiniert die vorgeschlagene Methode hohe Genauigkeit mit Effizienz in der Berechnung der Lösungen. Folglich kann man die Simulationen mit einer verhĂ€ltnismĂ€ĂŸig geringen Gitterauflösung durchfĂŒhren. Der Fokus dieser Arbeit liegt bei achsensymmetrischen Formen und Strömungen, wie sie bei vielen biophysikalischen Anwendungen zu finden sind. Neben einer allgemeinen dreidimensionalen Beschreibung formulieren wir achsensymmetrische KrĂ€fte auf der OberflĂ€che, fĂŒr welche wir eine Diskretisierung mit der Finite Differenzen Methode vorschlagen, welche an eine Finite-Elemente Methode fĂŒr die umgebenden Fluide gekoppelt ist. Weiterhin entwickeln wir eine Strategie zur impliziten Kopplung der KrĂ€fte, um Zeitschrittrestriktionen zu reduzieren. In verschiedenen numerischen Tests werden wir zeigen, dass akkurate Ergebnisse schon in einer GrĂ¶ĂŸenordnung von Minuten auf einer Single-Core CPU erreicht werden können. Die Methode wurde in drei aktuellen Anwendungen verwendet, wobei mindestens zwei davon nach unserer Kenntnis im Moment mit keiner anderen numerischen Methode simuliert werden können: ZunĂ€chst prĂ€sentieren wir Simulationen von biologischen Zellen, die im Zuge eines RT-DC (Real-Time Deformability Cytometry) Experiments durch einen schmalen mikrofluidischen Kanal advektiert und dabei verformt werden. Danach zeigen wir die Ergebnisse erster Simulationen der uniaxialen Kompression biologischer Zellen zwischen zwei parallelen Platten im Zuge eines AFM Experiments. Schließlich prĂ€sentieren wir Resultate erster Simulationen von neuartigen mikroschwimmenden Schalen, welche lediglich durch Ă€ußere EinflĂŒsse (wie z.B. Ultraschall), zum Schwimmen angeregt werden können.The dynamics of membranes, shells, and capsules in fluid flow has become an active research area in computational physics and computational biology. The small thickness of these elastic materials enables their efficient approximation as a hypersurface, which exhibits an elastic response to in-plane stretching and out-of-plane bending, possibly accompanied by a surface tension force. In this work, we present a novel arbitrary Lagrangian-Eulerian (ALE) method to simulate such elastic surfaces immersed in Navier-Stokes fluids. The method combines high accuracy with computational efficiency, since the grid is matched to the elastic surface and can therefore be resolved with relatively few grid points. The focus of this work is on axisymmetric shapes and flow conditions, which are present in a wide range of biophysical problems. Next to a general three-dimensional description, we formulate axisymmetric elastic surface forces and propose a discretization with surface finite-differences coupled to evolving finite elements. We further develop an implicit coupling strategy to reduce time step restrictions. Several numerical test cases show that accurate results can be achieved at computational times on the order of minutes on a single core CPU. Three state-of-the-art applications are demonstrated, where to our knowledge at least two of them cannot be simulated with any other numerical method so far. First, simulations of biological cells being advected through a microfluidic channel and therefore being deformed during an RT-DC (Real-Time Deformability Cytometry) experiment are presented. Then, the uniaxial compression of the cortex of a biological cell during an AFM experiment is investigated. Finally, we present the results of first simulations of the observed shape oscillations of novel microswimming shells which can be locomoted by exterior influences (e.g. ultrasound waves) only

    Post-buckling dynamics of spherical shells

    No full text
    International audienceWe explore the intrinsic dynamics of spherical shells immersed in a fluid in the vicinity of their buckled state, through experiments and three-dimensional axisymmetric simulations. The results are supported by a theoretical model that accurately describes the buckled shell as a two-variable-only oscillator. We quantify the effective ‘softening’ of shells above the buckling threshold, as observed in recent experiments on interactions between encapsulated microbubbles and acoustic waves. The main dissipation mechanism in the neighbouring fluid is also evidenced

    Adaptive Micromixer Based on the Solutocapillary Marangoni Effect in a Continuous-Flow Microreactor

    No full text
    Continuous-flow microreactors are an important development in chemical engineering technology, since pharmaceutical production needs flexibility in reconfiguring the synthesis system rather than large volumes of product yield. Microreactors of this type have a special vessel, in which the convective vortices are organized to mix the reagents to increase the product output. We propose a new type of micromixer based on the intensive relaxation oscillations induced by a fundamental effect discovered recently. The mechanism of these oscillations was found to be a coupling of the solutal Marangoni effect, buoyancy and diffusion. The phenomenon can be observed in the vicinity of an air⁻liquid (or liquid⁻liquid) interface with inhomogeneous concentration of a surface-active solute. Important features of the oscillations are demonstrated experimentally and numerically. The periodicity of the oscillations is a result of the repeated regeneration of the Marangoni driving force. This feature is used in our design of a micromixer with a single air bubble inside the reaction zone. We show that the micromixer does not consume external energy and adapts to the medium state due to feedback. It switches on automatically each time when a concentration inhomogeneity in the reaction zone occurs, and stops mixing when the solution becomes sufficiently uniform

    Coated microbubbles swim via shell buckling

    No full text
    Abstract Engineered microswimmers show great promise in various biomedical applications. However, their application is hindered by the slow mobility, limited maneuverability and poor biocompatibility. Lipid coated microbubbles have high compressibility and are already approved for clinical use as diagnostic ultrasound contrast agents. Here we experimentally investigate the swimming motion of these microbubbles under external cyclic overpressure. A net displacement was generated via reproducible and non-destructive cycles of deflation and re-inflation of the microbubble. We also propose a numerical model which allows a maximum swimming speed on the order of meters per second, which falls in the range of blood flow velocity in large vessels. Unlike the acoustic radiation force technique, where the displacement is always directed along the axis of ultrasound propagation, here, the direction of propulsion is controlled in the shell reference frame. This provides a solution toward controlled steering for ultrasound molecular imaging and drug delivery
    corecore