40 research outputs found

    Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson\u27s disease

    Full text link
    Abstract Background PD (Parkinson\u27s disease) is characterized by impairments in cortical plasticity, in beta frequency at rest and in beta power modulation during movement (i.e., event‐related ERS [synchronization] and ERD [desynchronization]). Recent results with experimental protocols inducing long‐term potentiation in healthy subjects suggest that cortical plasticity phenomena might be reflected by changes of beta power recorded with EEG during rest. Here, we determined whether motor practice produces changes in beta power at rest and during movements in both healthy subjects and patients with PD. We hypothesized that such changes would be reduced in PD. Methods We thus recorded EEG in patients with PD and age‐matched controls before, during and after a 40‐minute reaching task. We determined posttask changes of beta power at rest and assessed the progressive changes of beta ERD and ERS during the task over frontal and sensorimotor regions. Results We found that beta ERS and ERD changed significantly with practice in controls but not in PD. In PD compared to controls, beta power at rest was greater over frontal sensors but posttask changes, like those during movements, were far less evident. In both groups, kinematic characteristics improved with practice; however, there was no correlation between such improvements and the changes in beta power. Conclusions We conclude that prolonged practice in a motor task produces use‐dependent modifications that are reflected in changes of beta power at rest and during movement. In PD, such changes are significantly reduced; such a reduction might represent, at least partially, impairment of cortical plasticity

    Beta oscillatory changes and retention of motor skills during practice in healthy subjects and in patients with Parkinson's disease

    Get PDF
    Recently we found that modulation depth of beta power during movement increases with practice over sensory-motor areas in normal subjects but not in patients with Parkinson's disease (PD). As such changes might reflect use-dependent modifications, we concluded that reduction of beta enhancement in PD represents saturation of cortical plasticity. A few questions remained open: What is the relation between these EEG changes and retention of motor skills? Would a second task exposure restore beta modulation enhancement in PD? Do practice-induced increases of beta modulation occur within each block? We thus recorded EEG in patients with PD and age-matched controls in two consecutive days during a 40-min reaching task divided in fifteen blocks of 56 movements each. The results confirmed that, with practice, beta modulation depth over the contralateral sensory-motor area significantly increased across blocks in controls but not in PD, while performance improved in both groups without significant correlations between behavioral and EEG data. The same changes were seen the following day in both groups. Also, beta modulation increased within each block with similar values in both groups and such increases were partially transferred to the successive block in controls, but not in PD. Retention of performance improvement was present in the controls but not in the patients and correlated with the increase in day 1 modulation depth. Therefore, the lack of practice-related increase beta modulation in PD is likely due to deficient potentiation mechanisms that permit between-block saving of beta power enhancement and trigger mechanisms of memory formation

    Movement Preparation and Bilateral Modulation of Beta Activity in Aging and Parkinson’s Disease

    Full text link
    In previous studies of young subjects performing a reaction-time reaching task, we found that faster reaction times are associated with increased suppression of beta power over primary sensorimotor areas just before target presentation. Here we ascertain whether such beta decrease similarly occurs in normally aging subjects and also in patients with Parkinson’s disease (PD), where deficits in movement execution and abnormalities of beta power are usually present. We found that in both groups, beta power decreased during the motor task in the electrodes over the two primary sensorimotor areas. However, before target presentation, beta decreases in PD were significantly smaller over the right than over the left areas, while they were symmetrical in controls. In both groups, functional connectivity between the two regions, measured with imaginary coherence, increased before the target appearance; however, in PD, it decreased immediately after, while in controls, it remained elevated throughout motor planning. As in previous studies with young subjects, the degree of beta power before target appearance correlated with reaction time. The values of coherence during motor planning, instead, correlated with movement time, peak velocity and acceleration. We conclude that planning of prompt and fast movements partially depends on coordinated beta activity of both sensorimotor areas, already at the time of target presentation. The delayed onset of beta decreases over the right region observed in PD is possibly related to a decreased functional connectivity between the two areas, and this might account for deficits in force programming, movement duration and velocity modulation

    Neural Activations during Visual Sequence Learning Leave a Trace in Post-Training Spontaneous EEG

    Get PDF
    Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-)EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ) and during the presentation of targets in random order (VRAN). We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP), an anterior-frontal (AFr), and a right frontal (RFr) area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity

    Control_11

    No full text
    <p>Archive of three EEG recordings named RAN30_1, RAN30_2, RAN30_3, each containing 32 trials that can be identified by the trigger called 'DIN'</p

    Control_8

    No full text
    <p>Archive of three EEG recordings named RAN30_1, RAN30_2, RAN30_3, each containing 32 trials that can be identified by the trigger called 'DIN'</p

    Control_10

    No full text
    <p>Archive of three EEG recordings named RAN30_1, RAN30_2, RAN30_3, each containing 32 trials that can be identified by the trigger called 'DIN'</p

    Patient_4

    No full text
    <p>Archive of three EEG recordings named RAN30_1, RAN30_2, RAN30_3, each containing 32 trials that can be identified by the trigger called 'DIN'</p

    Patient_3

    No full text
    <p>Archive of three EEG recordings named RAN30_1, RAN30_2, RAN30_3, each containing 32 trials that can be identified by the trigger called 'DIN'</p

    PLOS_meziane_data

    No full text
    <p>This fileset contains the EEG data used in the study</p
    corecore