5,786 research outputs found

    Sudbury project (University of Muenster-Ontario Geological Survey): Field studies 1984-1989 - summary of results

    Get PDF
    In cooperation between the Ontario Geological Survey and the Institute of Geology and Institute of Planetology, geological, petrological, and geochemical studies were carried out on impact-related phenomena of the Sudbury structure during the last decade. The main results of the field studies are briefly reviewed. Footwall rocks, sublayer, and lower sections of the Sudbury Igneous Complex (SIC) were mainly mapped and sampled in the northern (Levack Township) and western (Trillabelle and Sultana Properties) parts of the north range. Within these mapping areas Sudbury Breccias (SB) and Footwall Breccias (FB) were studied; SB were also investigated along extended profiles beyond the north and south ranges up to 55 km from the SIC. The Onaping Formation (OF) and the upper section of the SIC were studied both in the north range (Morgan and Dowling Townships) and in the southern east range (Capreol and McLennan Townships)

    Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    Get PDF
    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion

    Analysis of No-Difference Findings in Evaluation Research

    Full text link
    Conclusions of no difference are becoming increasingly important in evaluation research. We delineate three major uses of no-difference findings and analyze their meanings. (1) No-differ ence findings in randomized experiments can be interpreted as support for conclusions of the absence of a meaningful treatment effect, but only if the proper analytic methods are used. (2) Statistically based conclusions in quasi-experiments do not allow causal statements about the treatment impact but do provide a metric to judge the size of the resulting difference. (3) Using no-difference findings to conclude equivalence on control variables is inefficient and potentially misleading. The final section of the article presents alternative methods by which conclusions of no difference may be supported when applicable. These methods include the use of arbitrarily high alpha levels, interval estimation, and power analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67182/2/10.1177_0193841X8901300604.pd

    Evaluation of the low-lying energy levels of two- and three-electron configurations for multi-charged ions

    Get PDF
    Accurate QED evaluations of the one- and two-photon interelectron interaction for low lying two- and three-electron configurations for ions with nuclear charge numbers 60≤Z≤9360\le Z \le 93 are performed. The three-photon interaction is also partly taken into account. The Coulomb gauge is employed. The results are compared with available experimental data and with different calculations. A detailed investigation of the behaviour of the energy levels of the configurations 1s1/22s1/21S01s_{1/2}2s_{1/2} {}^1 S_0, 1s1/22p1/23P01s_{1/2}2p_{1/2} {}^3 P_0 near the crossing points Z=64 and Z=92 is carried out. The crossing points are important for the future experimental search for parity nonconserving (PNC) effects in highly charged ions

    Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for 12≤Z≤3012\leq Z\leq30 Elements

    Full text link
    Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the Kα\alpha hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.Comment: accepted versio

    One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields

    Full text link
    The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of an external electric field are compared theoretically. It is shown that nonresonant corrections to the transition frequency contain terms linear in the electric field. The existence of these terms does not violate space and time parity and leads to a difference in the resonant spectroscopic measurements for hydrogen and anti-hydrogen atoms in an external electric field. The one-photon 1s-2p and the two-photon 1s-2s resonances are investigated

    Insights into the O : C-dependent mechanisms controlling the evaporation of α-pinene secondary organic aerosol particles

    Get PDF
    The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced α-pinene SOA with three different oxidation levels (characterized by average oxygen-to-carbon ratio; O:C‾=0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH &lt;2&thinsp;%, 40&thinsp;%, and 80&thinsp;%) and used a filter-based thermal desorption method to gain volatility and chemical composition information. We observed reduced particle evaporation for particles with increasing O:C‾ ratio, indicating that particles become more resilient to evaporation with oxidative aging. Particle evaporation was increased in the presence of water vapour and presumably particulate water; at the same time the resistance of the residual particles to thermal desorption was increased as well. For SOA with O:C‾=0.96, the unexpectedly large increase in mean thermal desorption temperature and changes in the thermogram shapes under wet conditions (80&thinsp;% RH) were an indication of aqueous phase chemistry. For the lower O:C‾ cases, some water-induced composition changes were observed. However, the enhanced evaporation under wet conditions could be explained by the reduction in particle viscosity from the semi-solid to liquid-like range, and the observed higher desorption temperature of the residual particles is a direct consequence of the increased removal of high-volatility and the continued presence of low-volatility compounds.</p

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Measuring and Understanding the Universe

    Full text link
    Revolutionary advances in both theory and technology have launched cosmology into its most exciting period of discovery yet. Unanticipated components of the universe have been identified, promising ideas for understanding the basic features of the universe are being tested, and deep connections between physics on the smallest scales and on the largest scales are being revealed.Comment: 39 pages, 11 figures, 1 table, accepted for publication in Reviews of Modern Physics Colloqui
    • …
    corecore