9 research outputs found

    Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    No full text
    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically absorb carbon dioxide. Here we show that a metal-organic frameworks (UTSA-16) displays high uptake (160 cm3 cm−3) of CO2 at ambient conditions, making it a potentially useful adsorbent material for post-combustion carbon dioxide capture and biogas stream purification. This has been further confirmed by simulated breakthrough experiments. The high storage capacities and selectivities of UTSA-16 for carbon dioxide capture are attributed to the optimal pore cages and the strong binding sites to carbon dioxide, which have been demonstrated by neutron diffraction studies

    Exploiting chemically selective weakness in solids as a route to new porous materials

    No full text
    Weakness in a material, especially when challenged by chemical, mechanical or physical stimuli, is often viewed as something extremely negative. There are countless examples in which interesting-looking materials have been dismissed as being too unstable for an application. But instability with respect to a stimulus is not always a negative point. In this Perspective we highlight situations where weakness in a material can be used as a synthetic tool to prepare materials that, at present, are difficult or even impossible to prepare using traditional synthetic approaches. To emphasize the concept, we will draw upon examples in the field of nanoporous materials, concentrating on metal-organic frameworks and zeolites, but the general concepts are likely to be applicable across a wide range of materials chemistry. In zeolite chemistry, there is a particular problem with accessing hypothetical structures that this approach may solve

    Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture

    No full text

    A reticular chemistry guide for the design of periodic solids

    No full text
    corecore