3,506 research outputs found

    Complex Permittivity Measurements at Variable Temperatures of Low Loss Dielectric Substrates Employing Split Post and Single Post Dielectric Resonators

    Get PDF
    A split post dielectric resonator in a copper enclosure and a single post dielectric resonator in a cavity with superconducting end-plates have been constructed and used for the complex permittivity measurements of single crystal substrates. (La,Sr)(Al,Ta)O3, LaAlO3, MgO and quartz substrates have been measured at temperatures from 20 K to 300 K in the split post resonator and from 15 K to 80 K in the single post resonator. The TE01delta mode resonant frequencies and unloaded Qo-factors of the empty resonators at temperature of 20 K were: 9.952 GHz and 25,000 for the split post resonator and 10.808 GHz and 240,000 for the single post resonator respectively.Comment: 4 pages, 8 figures, 1 tabl

    Synthesis of free-standing graphene in atmospheric pressure microwave plasma for the oil-water separation application

    Get PDF
    The synthesis of free-standing graphene in a microwave plasma at ambient conditions is currently of great interest. The past works have relied on the usage of higher microwave powers to synthesize free-standing graphene which is not only costly but also an obstacle to the industrialization of the process. The aim of this work was to bring down the cost of the process by synthesizing graphene at a significantly lower microwave power, i.e. 250 W. The formation of graphene was confirmed through Raman spectrum and scanning electron microscopy, where the Raman spectrum showed the signature 2D peak of graphene, and the vertical orientation of the graphene was observed in the microscopic images. The application of graphene in oil-water separation is demonstrated based on its hydrophobic and oleophilic properties. The as-synthesized pristine graphene coated on a melamine sponge showed a mass absorption capacity (57 g/g) comparable to that of functionalized or composite graphene

    Microwave and Radio-Frequency Technologies in Agriculture: an introduction for agriculturalists and engineers

    Get PDF
    Humanity's ability to produce enough food is mostly due to adoption of new methods and technologies by the agricultural industries as they became available. New information, communication and high speed processing and precision agriculture technologies have the potential to transform the agricultural industry. These technologies incorporate radio-frequency and microwave radiation into their systems. This book presents an overview of how these technologies are being used in agricultural systems. The main purpose of the book is to provide a glimpse of what is possible and encourage practitioners in the engineering and agricultural industries to explore how radio-frequency and microwave systems might further enhance the agricultural industry. The authors have extensive experience in agricultural and microwave engineering, instrumentation and communication systems

    Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    Get PDF
    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ∼1.58 at 600 nm, an optical band gap of ∼2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies

    Influence of deposition temperature and hydrogen on sustainable and transfer-free graphene transparent electrode for organic solar cells

    Get PDF
    The transfer-free graphene transparent conducting electrode (TCE) is a promising alternative to indium tin oxide (ITO) for organic solar cells (OSCs). In the present work, a comprehensive investigation on how deposition temperature and H2 flow rates affect the growth, structural, optical, and electrical properties of graphene produced by RF plasma enhanced chemical vapor deposition using sustainable sources was conducted. Invertedgeometry OSCs with P3HT: PCBM photoactive layer were fabricated on transfer-free graphene TCEs developed under different conditions. Moreover, the coupling of silver nanowires (AgNWs) with different graphene films was studied for hybrid graphene-AgNWs TCEs for OSCs. Devices based on graphene TCEs prepared at low or zero H2 flow have shown better performances than those at high flow of H2. Similarly, graphene TCEs prepared at high temperature (>700 â—¦C, on quartz) led to a deteriorated device performance due to the highly increased growth of vertically oriented graphene nanosheets, which dramatically reduced film transmittance and increased surface roughness. The present work provides solid understanding of the growth mechanism of RFPECVD graphene on glass from a sustainable carbon source. More importantly, the sustainable, ecofriendly, cost- and time-effective production of scalable transfer-free graphene TCEs for OSCs is optimized which paves the way towards ITO-free optoelectronics

    Breakdown of biomass for energy applications using microwave pyrolysis: A technological review

    Get PDF
    The agricultural industry faces a permanent increase in waste generation, which is associated with the fast-growing population. Due to the environmental hazards, there is a paramount demand for generating electricity and value-added products from renewable sources. The selection of the conversion method is crucial to develop an eco-friendly, efficient and economically viable energy application. This manuscript investigates the influencing factors that affect the quality and yield of the biochar, bio-oil and biogas during the microwave pyrolysis process, evaluating the biomass nature and diverse combinations of operating conditions. The by-product yield depends on the intrinsic physicochemical properties of biomass. Feedstock with high lignin content is favourable for biochar production, and the breakdown of cellulose and hemicellulose leads to higher syngas formation. Biomass with high volatile matter concentration promotes the generation of bio-oil and biogas. The pyrolysis system's conditions of input power, microwave heating suspector, vacuum, reaction temperature, and the processing chamber geometry were influence factors for optimising the energy recovery. Increased input power and microwave susceptor addition lead to high heating rates, which were beneficial for biogas production, but the excess pyrolysis temperature induce a reduction of bio-oil yield

    On-Orbit Assembly of Flexible Space Structures with SWARM

    Get PDF
    On-orbit assembly is an enabling technology for many space applications. However, current methods of human assisted assembly are high in cost and risk to the crew, motivating a desire to automate the on-orbit assembly process using robotic technology. Construction of large space structures will likely involve the manipulation of flexible elements such as trusses or solar panels, and automation for assembly of flexible structures has significant challenges, particularly in control systems. This paper presents results of ground-based experiments on the assembly of a flexible space structures using the hardware developed under the Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM) program. Results are shown for a series of incremental tests that demonstrate control of a flexible structure, docking, and reconfiguration after docking. These results demonstrate the feasibility of the assembly of flexible structures using this methodology.United States. National Aeronautics and Space Administration. Small Business Innovation Program (Contract NNM07AA22C

    Plant secondary metabolite-derived polymers: a potential approach to develop antimicrobial films

    Get PDF
    The persistent issue of bacterial and fungal colonization of artificial implantable materials and the decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e., plant secondary metabolites (PSMs) and their naturally occurring combinations (i.e., essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action, and diversity of available chemistries, plant secondary metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without a significant loss of activity is not trivial. Using selected examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer coatings from volatile renewable resources
    • …
    corecore