28,299 research outputs found
Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis
Background: Salmonellosis is one of the most common foodborne diseases worldwide. Although human infection by non-typhoidal Salmonella (NTS) enterica subspecies enterica is associated primarily with a self-limiting diarrhoeal illness, invasive bacterial infections (such as septicaemia, bacteraemia and meningitis) were also reported. Human outbreaks of NTS were reported in several countries all over the world including developing as well as high-income countries. Conventional laboratory methods such as pulsed field gel electrophoresis (PFGE) do not display adequate discrimination and have their limitations in epidemiological surveillance. It is therefore very crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological characterisation and outbreak investigation.
Methods: Here, we used different whole genome sequence (WGS)-based subtyping methods for retrospective investigation of two different outbreaks of Salmonella Typhimurium and Salmonella Dublin that occurred in 2013 in UK and Ireland respectively.
Results: Single nucleotide polymorphism (SNP)-based cluster analysis of Salmonella Typhimurium genomes revealed well supported clades, that were concordant with epidemiologically defined outbreak and confirmed the source of outbreak is due to consumption of contaminated mayonnaise. SNP-analyses of Salmonella Dublin genomes confirmed the outbreak however the source of infection could not be determined. The core genome multilocus sequence typing (cgMLST) was discriminatory and separated the outbreak strains of Salmonella Dublin from the non-outbreak strains that were concordant with the epidemiological data however cgMLST could neither discriminate between the outbreak and non-outbreak strains of Salmonella Typhimurium nor confirm that contaminated mayonnaise is the source of infection, On the other hand, other WGS-based subtyping methods including multilocus sequence typing (MLST), ribosomal MLST (rMLST), whole genome MLST (wgMLST), clustered regularly interspaced short palindromic repeats (CRISPRs), prophage sequence profiling, antibiotic resistance profile and plasmid typing methods were less discriminatory and could not confirm the source of the outbreak.
Conclusions: Foodborne salmonellosis is an important concern for public health therefore, it is crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological surveillance and outbreak investigation. In this study, we showed that SNP-based analyses do not only have the ability to confirm the occurrence of the outbreak but also to provide definitive evidence of the source of the outbreak in real-time
Simulation of brittle damage for fracture process of endodontically treated tooth
The mechanics of brittle damage in porcelain of an endodontically treated maxilla incisor tooth was simulated using finite element method (FEM). For this purpose a very complex composite structure of endodontically treated tooth is simulated under transverse loading. Three dimensional (3D) model of human maxilla incisor tooth root was developed based on Computed Tomography (CT) scan images. Crown, core cement, resin core, dental post, post cement and dentin were created using SolidWorks software, and then the model was imported into ABAQUS-6.9EF software for nonlinear behavior analysis. This study utilizes finite element method to simulate onset and propagation of crack in ceramic layer (porcelain) by the cause of both tension and compression loading related to complexity of the geometry of tooth implant. The simulation has been done using brittle damaged model available in ABAQUS/Explicit in quasi-static load condition. The load-displacement response of whole structure is measured from the top of porcelain by controlling displacement on a rigid rod. Crack initiated at the top of porcelain bellow the location of the rod caused by tension damage at equivalent load of 590 N. Damage in porcelain accounts for up to 63% reduction of whole structure stiffness from the undamaged state. The failure process in porcelain layer can be described by an exponential rate of fracture energy dissipation. This study demonstrated that the proposed finite element model and analysis procedure can be use to predict the nonlinear behavior of tooth implant
Novel, congenital iliac arterial anatomy: Absent common iliac arteries and left internal iliac artery.
Congenital anomalies of the iliac arterial system are rare and can be associated with ischemia. With an increase in vascular imaging and interventions, such anomalies are likely to be encountered with greater frequency. We present the case of a 25-year-old female who was incidentally found to have absence of the common iliac arteries bilaterally and the left internal iliac artery, a constellation not previously reported in the literature. We present relevant imaging findings, review embryonic vascular development, and discuss potential clinical implications
DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog
Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for
enhancing road safety. Routing of messages in VANET is challenging due to
packet delays arising from high mobility of vehicles, frequently changing
topology, and high density of vehicles, leading to frequent route breakages and
packet losses. Previous researchers have used either mobility in vehicular fog
computing or cloud computing to solve the routing issue, but they suffer from
large packet delays and frequent packet losses. We propose Dynamic Fog for
Connected Vehicles (DFCV), a fog computing based scheme which dynamically
creates, increments and destroys fog nodes depending on the communication
needs. The novelty of DFCV lies in providing lower delays and guaranteed
message delivery at high vehicular densities. Simulations were conducted using
hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that
DFCV ensures efficient resource utilization, lower packet delays and losses at
high vehicle densities
Hybrid-Vehcloud: An Obstacle Shadowing Approach for VANETs in Urban Environment
Routing of messages in Vehicular Ad-hoc Networks (VANETs) is challenging due
to obstacle shadowing regions with high vehicle densities, which leads to
frequent disconnection problems and blocks radio wave propagation between
vehicles. Previous researchers used multi-hop, vehicular cloud or roadside
infrastructures to solve the routing issue among the vehicles, but they suffer
from significant packet delays and frequent packet losses arising from obstacle
shadowing. We proposed a vehicular cloud based hybrid technique called
Hybrid-Vehcloud to disseminate messages in obstacle shadowing regions, and
multi-hop technique to disseminate messages in non-obstacle shadowing regions.
The novelty of our approach lies in the fact that our proposed technique
dynamically adapts between obstacle shadowing and non-obstacle shadowing
regions. Simulation based performance analysis of Hybrid-Vehcloud showed
improved performance over Cloud-assisted Message Downlink Dissemination Scheme
(CMDS), Cross-Layer Broadcast Protocol (CLBP) and Cloud-VANET schemes at high
vehicle densities
Adsorption of 3-chloroaniline on potato skin in aqueous solution
The adsorption behaviour of aromatic amine 3-chloroaniline (3-CA) from aqueous solution on fresh potato skin was investigated. A series of batch experiments were conducted under different experimental conditions of contact time, 3-chloroaniline concentration, weight of potato skin, pH, temperature, and ionic strength using RP-HPLC analysis. Adsorption equilibrium of 3-chloroaniline at concentration of 10 µg/mL on 1 g weight of chopped potato skin was achieved in 24 hours. Using different varieties of potato skin showed that the adsorption of 3-CA on Nicola variety is higher compared to Sante and Maris Peer varieties. Adsorption on potato skin was found to be generally higher compared to cortex and pith tissues. Analysis of adsorption isotherm shows that equilibrium data was fitted to Freundlich model (R² = 0.977). Maximum adsorption capacities of 3-chloroaniline were found in the pH range from 3 to 9, whereas low adsorption quantities were found in high acidic and high basic solutions (pH 2 and pH 13, resp.). Adsorption capacity increased with an increase in temperature from 4°C to 30°C but decreased with further increase of temperature to 40°C. Testing the ionic strength showed that increasing the concentration of electrolyte reduces the adsorption efficiency. This study indicated that the fresh potato skin (without any treatment) is possible to use as a new adsorbent for removal of 3-chloroaniline from industrial waste water
- …