5 research outputs found

    Neutrophil extracellular traps in influenza infection

    No full text
    Despite recent progress in developing novel therapeutic approaches and vaccines, influenza is still considered a global health threat, with about half a million mortality worldwide. This disease is caused by Influenza viruses, which are known for their rapid evolution due to different genetical mechanisms that help them develop new strains with the ability to evade therapies and immunization. Neutrophils are one of the first immune effectors that act against pathogens. They use multiple mechanisms, including phagocytosis, releasing the reactive oxygen species, degranulation, and the production of neutrophil extracellular traps. Neutrophil extracellular traps are used to ensnare pathogens; however, their dysregulation is attributed to inflammatory and infectious diseases. Here, we discuss the effects of these extracellular traps in the clinical course of influenza infection and their ability to be a potential target in treating influenza infection

    Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we?

    No full text
    Abstract Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstrac

    Forecasting influenza hemagglutinin mutations through the lens of anomaly detection

    No full text
    Abstract The influenza virus hemagglutinin is an important part of the virus attachment to the host cells. The hemagglutinin proteins are one of the genetic regions of the virus with a high potential for mutations. Due to the importance of predicting mutations in producing effective and low-cost vaccines, solutions that attempt to approach this problem have recently gained significant attention. A historical record of mutations has been used to train predictive models in such solutions. However, the imbalance between mutations and preserved proteins is a big challenge for the development of such models that need to be addressed. Here, we propose to tackle this challenge through anomaly detection (AD). AD is a well-established field in Machine Learning (ML) that tries to distinguish unseen anomalies from normal patterns using only normal training samples. By considering mutations as anomalous behavior, we could benefit existing rich solutions in this field that have emerged recently. Such methods also fit the problem setup of extreme imbalance between the number of unmutated vs. mutated training samples. Motivated by this formulation, our method tries to find a compact representation for unmutated samples while forcing anomalies to be separated from the normal ones. This helps the model to learn a shared unique representation between normal training samples as much as possible, which improves the discernibility and detectability of mutated samples from the unmutated ones at the test time. We conduct a large number of experiments on four publicly available datasets, consisting of three different hemagglutinin protein datasets, and one SARS-CoV-2 dataset, and show the effectiveness of our method through different standard criteria

    Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

    No full text
    The current study systematically reviewed, summarized and meta-analyzed the clinical features of the vaccines in clinical trials to provide a better estimate of their efficacy, side effects and immunogenicity. All relevant publications were systematically searched and collected from major databases up to 12 March 2021. A total of 25 RCTs (123 datasets), 58,889 cases that received the COVID-19 vaccine and 46,638 controls who received placebo were included in the meta-analysis. In total, mRNA-based and adenovirus-vectored COVID-19 vaccines had 94.6% (95% CI 0.936–0.954) and 80.2% (95% CI 0.56–0.93) efficacy in phase II/III RCTs, respectively. Efficacy of the adenovirus-vectored vaccine after the first (97.6%; 95% CI 0.939–0.997) and second (98.2%; 95% CI 0.980–0.984) doses was the highest against receptor-binding domain (RBD) antigen after 3 weeks of injections. The mRNA-based vaccines had the highest level of side effects reported except for diarrhea and arthralgia. Aluminum-adjuvanted vaccines had the lowest systemic and local side effects between vaccines’ adjuvant or without adjuvant, except for injection site redness. The adenovirus-vectored and mRNA-based vaccines for COVID-19 showed the highest efficacy after first and second doses, respectively. The mRNA-based vaccines had higher side effects. Remarkably few experienced extreme adverse effects and all stimulated robust immune responses
    corecore