209 research outputs found
Efficient ECG Compression and QRS Detection for E-Health Applications
Current medical screening and diagnostic procedures have shifted toward recording longer electrocardiogram (ECG) signals, which have traditionally been processed on personal computers (PCs) with high-speed multi-core processors and efficient memory processing. Battery-driven devices are now more commonly used for the same purpose and thus exploring highly efficient, low-power alternatives for local ECG signal collection and processing is essential for efficient and convenient clinical use. Several ECG compression methods have been reported in the current literature with limited discussion on the performance of the compressed and the reconstructed ECG signals in terms of the QRS complex detection accuracy. This paper proposes and evaluates different compression methods based not only on the compression ratio (CR) and percentage root-mean-square difference (PRD), but also based on the accuracy of QRS detection. In this paper, we have developed a lossy method (Methods III) and compared them to the most current lossless and lossy ECG compression methods (Method I and Method II, respectively). The proposed lossy compression method (Method III) achieves CR of 4.5×, PRD of 0.53, as well as an overall sensitivity of 99.78% and positive predictivity of 99.92% are achieved (when coupled with an existing QRS detection algorithm) on the MIT-BIH Arrhythmia database and an overall sensitivity of 99.90% and positive predictivity of 99.84% on the QT database.This work was made possible by NPRP grant #7-684-1-127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
Machine Learning Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress
The demand for wearable devices that can detect anxiety and stress when driving is increasing. Recent studies have attempted to use multiple biosignals to detect driving stress. However, collecting multiple biosignals can be complex and is associated with numerous challenges. Determining the optimal biosignal for assessing driving stress can save lives. To the best of our knowledge, no study has investigated both longitudinal and transitional stress assessment using supervised and unsupervised ML techniques. Thus, this study hypothesizes that the optimal signal for assessing driving stress will consistently detect stress using supervised and unsupervised machine learning (ML) techniques. Two different approaches were used to assess driving stress: longitudinal (a combined repeated measurement of the same biosignals over three driving states) and transitional (switching from state to state such as city to highway driving). The longitudinal analysis did not involve a feature extraction phase while the transitional analysis involved a feature extraction phase. The longitudinal analysis consists of a novel interaction ensemble (INTENSE) that aggregates three unsupervised ML approaches: interaction principal component analysis, connectivity-based clustering, and K-means clustering. INTENSE was developed to uncover new knowledge by revealing the strongest correlation between the biosignal and driving stress marker. These three MLs each have their well-known and distinctive geometrical basis. Thus, the aggregation of their result would provide a more robust examination of the simultaneous non-causal associations between six biosignals: electrocardiogram (ECG), electromyogram, hand galvanic skin resistance, foot galvanic skin resistance, heart rate, respiration, and the driving stress marker. INTENSE indicates that ECG is highly correlated with the driving stress marker. The supervised ML algorithms confirmed that ECG is the most informative biosignal for detecting driving stress, with an overall accuracy of 75.02%
Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension
Elevated blood pressure (BP) is a major cause of death, yet hypertension commonly goes undetected. Owing to its nature, it is typically asymptomatic until later in its progression when the vessel or organ structure has already been compromised. Therefore, noninvasive and continuous BP measurement methods are needed to ensure appropriate diagnosis and early management before hypertension leads to irreversible complications. Photoplethysmography (PPG) is a noninvasive technology with waveform morphologies similar to that of arterial BP waveforms, therefore attracting interest regarding its usability in BP estimation. In recent years, wearable devices incorporating PPG sensors have been proposed to improve the early diagnosis and management of hypertension. Additionally, the need for improved accuracy and convenience has led to the development of devices that incorporate multiple different biosignals with PPG. Through the addition of modalities such as an electrocardiogram, a final measure of the pulse wave velocity is derived, which has been proved to be inversely correlated to BP and to yield accurate estimations. This paper reviews and summarizes recent studies within the period 2010-2019 that combined PPG with other biosignals and offers perspectives on the strengths and weaknesses of current developments to guide future advancements in BP measurement. Our literature review reveals promising measurement accuracies and we comment on the effective combinations of modalities and success of this technology
Effectiveness of Remote PPG Construction Methods: A Preliminary Analysis
The contactless recording of a photoplethysmography (PPG) signal with a Red-Green-Blue (RGB) camera is known as remote photoplethysmography (rPPG). Studies have reported on the positive impact of using this technique, particularly in heart rate estimation, which has led to increased research on this topic among scientists. Therefore, converting from RGB signals to constructing an rPPG signal is an important step. Eight rPPG methods (plant-orthogonal-to-skin (POS), local group invariance (LGI), the chrominance-based method (CHROM), orthogonal matrix image transformation (OMIT), GREEN, independent component analysis (ICA), principal component analysis (PCA), and blood volume pulse (PBV) methods) were assessed using dynamic time warping, power spectrum analysis, and Pearson’s correlation coefficient, with different activities (at rest, during exercising in the gym, during talking, and while head rotating) and four regions of interest (ROI): the forehead, the left cheek, the right cheek, and a combination of all three ROIs. The best performing rPPG methods in all categories were the POS, LGI, and OMI methods; each performed well in all activities. Recommendations for future work are provided
Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring
One in three adults worldwide has hypertension, which is associated with significant morbidity and mortality. Consequently, there is a global demand for continuous and non-invasive blood pressure (BP) measurements that are convenient, easy to use, and more accurate than the currently available methods for detecting hypertension. This could easily be achieved through the integration of single-site photoplethysmography (PPG) readings into wearable devices, although improved reliability and an understanding of BP estimation accuracy are essential. This review paper focuses on understanding the features of PPG associated with BP and examines the development of this technology over the 2010-2019 period in terms of validation, sample size, diversity of subjects, and datasets used. Challenges and opportunities to move single-site PPG forward are also discussed
Assessment of Blood Pressure Using Only a Smartphone and Machine Learning Techniques: A Systematic Review
Regular monitoring of blood pressure (BP) allows for early detection of hypertension and symptoms related to cardiovascular disease. Measuring BP with a cuff requires equipment that is not always readily available and it may be impractical for some patients. Smartphones are an integral part of the lives of most people; thus, detecting and monitoring hypertension with a smartphone is likely to increase the ability to monitor BP due to the convenience of use for many patients. Smartphones lend themselves to assessing cardiovascular health because their built-in sensors and cameras provide a means of detecting arterial pulsations. To this end, several image processing and machine learning (ML) techniques for predicting BP using a smartphone have been developed. Several ML models that utilize smartphones are discussed in this literature review. Of the 53 papers identified, seven publications were evaluated. The performance of the ML models was assessed based on their accuracy for classification, the mean error measure, and the standard deviation of error for regression. It was found that artificial neural networks and support vector machines were often used. Because a variety of influencing factors determines the performance of an ML model, no clear preference could be determined. The number of input features ranged from five to 233, with the most commonly used being demographic data and the features extracted from photoplethysmogram signals. Each study had a different number of participants, ranging from 17 to 5,992. Comparisons of the cuff-based measures were mostly used to validate the results. Some of these ML models are already used to detect hypertension and BP but, to satisfy possible regulatory demands, improved reliability is needed under a wider range of conditions, including controlled and uncontrolled environments. A discussion of the advantages of various ML techniques and the selected features is offered at the end of this systematic review
Assessing Anxiety Disorders Using Wearable Devices: Challenges and Future Directions
Wearable devices (WD) are starting to increasingly be used for interventions to promote well-being by reducing anxiety disorders (AD). Electrocardiogram (ECG) signal is one of the most commonly used biosignals for assessing the cardiovascular system as it significantly reflects the activity of the autonomic nervous system during emotional changes. Little is known about the accuracy of using ECG features for detecting ADs. Moreover, during our literature review, a limited number of studies were found that involve ECG collection usingWDfor promoting mental well-being. Thus, for the sake of validating the reliability of ECG features for detecting anxiety in WD, we screened 1040 articles, and only 22 were considered for our study; specifically 6 on panic, 4 on post-traumatic stress, 4 on generalized anxiety, 3 on social, 3 on mixed, and 2 on obsessive-compulsive anxiety disorder articles. Most experimental studies had controversial results. Upon reviewing each of these papers, it became apparent that the use of ECG features for detecting different types of anxiety is controversial, and the use of ECG-WD is an emerging area of research, with limited evidence suggesting its reliability. Due to the clinical nature of most studies, it is difficult to determine the specific impact of ECG features on detecting ADs, suggesting the need for more robust studies following our proposed recommendations
An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection
This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms
- …