190 research outputs found
Independent Living Management
This is the published version. Copyright 2004 IOS Press.There is no abstract for this item
And in the Darkness Bind Them: Equatorial Rings, B[e] Supergiants, and the Waists of Bipolar Nebulae
We report the discovery of two new circumstellar ring nebulae in the western
Carina Nebula. The brighter object, SBW1, resembles a lidless staring eye and
encircles a B1.5 Iab supergiant. Its size is identical to the inner ring around
SN1987A, but SBW1's low N abundance indicates that the star didn't pass through
a RSG phase. The fainter object, SBW2, is a more distorted ring, is N-rich, and
has a central star that seems to be invisible. We discuss these two new nebulae
in context with rings around SN1987A, Sher25, HD168625, RY Scuti, WeBo1, SuWt2,
and others. The ring bearers fall into two groups: Five rings surround hot
supergiants, and all except for the one known binary are carbon copies of the
ring around SN1987A. We propose a link between these rings and B[e]
supergiants, where the rings derive from the same material in an earlier B[e]
phase. The remaining four rings surround evolved intermediate-mass stars; all
members of this ring fellowship are close binaries, hinting that binary
interactions govern the forging of such rings. We estimate that there may be
several thousand more dark rings in the Galaxy, but we are scarcely aware of
their existence due to selection effects. The lower-mass objects might be the
equatorial density enhancements often invoked to bind the waists of bipolar
PNe.Comment: AJ accepted, 27 page
A Recirculating Eddy Promotes Subsurface Particle Retention in an Antarctic Biological Hotspot
Palmer Deep Canyon is one of the biological hotspots associated with deep bathymetric features along the Western Antarctic Peninsula. The upwelling of nutrient-rich Upper Circumpolar Deep Water to the surface mixed layer in the submarine canyon has been hypothesized to drive increased phytoplankton biomass productivity, attracting krill, penguins and other top predators to the region. However, observations in Palmer Deep Canyon lack a clear in-situ upwelling signal, lack a physiological response by phytoplankton to Upper Circumpolar Deep Water in laboratory experiments, and surface residence times that are too short for phytoplankton populations to reasonably respond to any locally upwelled nutrients. This suggests that enhanced local upwelling may not be the mechanism that links canyons to increased biological activity. Previous observations of isopycnal doming within the canyon suggested that a subsurface recirculating feature may be present. Here, using in-situ measurements and a circulation model, we demonstrate that the presence of a recirculating eddy may contribute to maintaining the biological hotspot by increasing the residence time at depth and retaining a distinct layer of biological particles. Neutrally buoyant particle simulations showed that residence times increase to upwards of 175 days with depth within the canyon during the austral summer. In-situ particle scattering, flow cytometry, and water samples from within the subsurface eddy suggest that retained particles are detrital in nature. Our results suggest that these seasonal, retentive features of Palmer Deep Canyon are important to the establishment of the biological hotspot
On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data
With the coming data deluge from synoptic surveys, there is a growing need
for frameworks that can quickly and automatically produce calibrated
classification probabilities for newly-observed variables based on a small
number of time-series measurements. In this paper, we introduce a methodology
for variable-star classification, drawing from modern machine-learning
techniques. We describe how to homogenize the information gleaned from light
curves by selection and computation of real-numbered metrics ("feature"),
detail methods to robustly estimate periodic light-curve features, introduce
tree-ensemble methods for accurate variable star classification, and show how
to rigorously evaluate the classification results using cross validation. On a
25-class data set of 1542 well-studied variable stars, we achieve a 22.8%
overall classification error using the random forest classifier; this
represents a 24% improvement over the best previous classifier on these data.
This methodology is effective for identifying samples of specific science
classes: for pulsational variables used in Milky Way tomography we obtain a
discovery efficiency of 98.2% and for eclipsing systems we find an efficiency
of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is
superior to other machine-learned methods in terms of accuracy, speed, and
relative immunity to features with no useful class information; the RF
classifier can also be used to estimate the importance of each feature in
classification. Additionally, we present the first astronomical use of
hierarchical classification methods to incorporate a known class taxonomy in
the classifier, which further reduces the catastrophic error rate to 7.8%.
Excluding low-amplitude sources, our overall error rate improves to 14%, with a
catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure
Bouncing Universes with Varying Constants
We investigate the behaviour of exact closed bouncing Friedmann universes in
theories with varying constants. We show that the simplest BSBM varying-alpha
theory leads to a bouncing universe. The value of alpha increases
monotonically, remaining approximately constant during most of each cycle, but
increasing significantly around each bounce. When dissipation is introduced we
show that in each new cycle the universe expands for longer and to a larger
size. We find a similar effect for closed bouncing universes in Brans-Dicke
theory, where also varies monotonically in time from cycle to cycle.
Similar behaviour occurs also in varying speed of light theories
Space-based research in fundamental physics and quantum technologies
Space-based experiments today can uniquely address important questions
related to the fundamental laws of Nature. In particular, high-accuracy physics
experiments in space can test relativistic gravity and probe the physics beyond
the Standard Model; they can perform direct detection of gravitational waves
and are naturally suited for precision investigations in cosmology and
astroparticle physics. In addition, atomic physics has recently shown
substantial progress in the development of optical clocks and atom
interferometers. If placed in space, these instruments could turn into powerful
high-resolution quantum sensors greatly benefiting fundamental physics.
We discuss the current status of space-based research in fundamental physics,
its discovery potential, and its importance for modern science. We offer a set
of recommendations to be considered by the upcoming National Academy of
Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the
Decadal Survey should include space-based research in fundamental physics as
one of its focus areas. We recommend establishing an Astronomy and Astrophysics
Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess
the status of both ground- and space-based efforts in the field, to identify
the most important objectives, and to suggest the best ways to organize the
work of several federal agencies involved. We also recommend establishing a new
NASA-led interagency program in fundamental physics that will consolidate new
technologies, prepare key instruments for future space missions, and build a
strong scientific and engineering community. Our goal is to expand NASA's
science objectives in space by including ``laboratory research in fundamental
physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph
Fundamental quantum optics experiments conceivable with satellites -- reaching relativistic distances and velocities
Physical theories are developed to describe phenomena in particular regimes,
and generally are valid only within a limited range of scales. For example,
general relativity provides an effective description of the Universe at large
length scales, and has been tested from the cosmic scale down to distances as
small as 10 meters. In contrast, quantum theory provides an effective
description of physics at small length scales. Direct tests of quantum theory
have been performed at the smallest probeable scales at the Large Hadron
Collider, meters, up to that of hundreds of kilometers. Yet,
such tests fall short of the scales required to investigate potentially
significant physics that arises at the intersection of quantum and relativistic
regimes. We propose to push direct tests of quantum theory to larger and larger
length scales, approaching that of the radius of curvature of spacetime, where
we begin to probe the interaction between gravity and quantum phenomena. In
particular, we review a wide variety of potential tests of fundamental physics
that are conceivable with artificial satellites in Earth orbit and elsewhere in
the solar system, and attempt to sketch the magnitudes of potentially
observable effects. The tests have the potential to determine the applicability
of quantum theory at larger length scales, eliminate various alternative
physical theories, and place bounds on phenomenological models motivated by
ideas about spacetime microstructure from quantum gravity. From a more
pragmatic perspective, as quantum communication technologies such as quantum
key distribution advance into Space towards large distances, some of the
fundamental physical effects discussed here may need to be taken into account
to make such schemes viable.Comment: 34 pages, 9 figures. Journal version, modified to respond to numerous
suggestion
The medical student
The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine
Evolution of the Scale Factor with a Variable Cosmological Term
Evolution of the scale factor a(t) in Friedmann models (those with zero
pressure and a constant cosmological term Lambda) is well understood, and
elegantly summarized in the review of Felten and Isaacman [Rev. Mod. Phys. 58,
689 (1986)]. Developments in particle physics and inflationary theory, however,
increasingly indicate that Lambda ought to be treated as a dynamical quantity.
We revisit the evolution of the scale factor with a variable Lambda-term, and
also generalize the treatment to include nonzero pressure. New solutions are
obtained and evaluated using a variety of observational criteria. Existing
arguments for the inevitability of a big bang (ie., an initial state with a=0)
are substantially weakened, and can be evaded in some cases with Lambda_0 (the
present value of Lambda) well below current experimental limits.Comment: 29 pages, 12 figures (not included), LaTeX, uses Phys Rev D style
files (revtex.cls, revtex.sty, aps.sty, aps10.sty, prabib.sty). To appear in
Phys Rev
Quantitative analysis of WC stars: Constraints on neon abundances from ISO/SWS spectroscopy
Neon abundances are derived in four Galactic WC stars -- gamma Vel (WR11,
WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) -
using mid-infrared fine structure lines obtained with ISO/SWS. Stellar
parameters for each star are derived using a non-LTE model atmospheric code
(Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and
infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results
from De Marco et al. (2000), who followed an identical approach.
ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while
[NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel.
Using a method updated from Barlow et al. (1988) to account for clumped winds,
we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is
highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic
values. However, observed Ne/He ratios are a factor of two times lower than
predictions of current evolutionary models of massive stars. An imprecise
mass-loss and distance were responsible for the much greater discrepancy in
neon content identified by Barlow et al.
Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no
trend towards higher temperature at earlier spectral type, supporting earlier
results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities
range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5,
adopting clumped winds, in which volume filling factors are 10%. In all cases,
wind performance numbers are less than 10, significantly lower than recent
estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen
abundances remain poorly constrained.Comment: 16 pages,7 figures accepted for MNRA
- …