15 research outputs found

    Molecular Gas in Candidate Double-Barred Galaxies II. Cooler, Less Dense Gas Associated with Stronger Central Concentrations

    Full text link
    We have performed a multi-transition CO study of the centers of seven double-barred galaxies that exhibit a variety of molecular gas morphologies to determine if the molecular gas properties are correlated with the nuclear morphology and star forming activity. Near infrared galaxy surveys have revealed the existence of nuclear stellar bars in a large number of barred or lenticular galaxies. High resolution CO maps of these galaxies exhibit a wide range of morphologies. Recent simulations of double-barred galaxies suggest that variations in the gas properties may allow it to respond differently to similar gravitational potentials. We find that the 12CO J=3-2/J=2-1 line ratio is lower in galaxies with centrally concentrated gas distributions and higher in galaxies with CO emission dispersed around the galactic center in rings and peaks. The 13CO/12CO J=2-1 line ratios are similar for all galaxies, which indicates that the J=3-2/J=2-1 line ratio is tracing variations in gas temperature and density, rather than variations in optical depth. There is evidence that the galaxies which contain more centralized CO distributions are comprised of molecular gas that is cooler and less dense. Observations suggest that the star formation rates are higher in the galaxies containing the warmer, denser, less centrally concentrated gas. It is possible that either the bar dynamics are responsible for the variety of gas distributions and densities (and hence the star formation rates) or that the star formation alone is responsible for modifying the gas properties.Comment: 27 pages + 6 figures; to appear in the April 20, 2003 issue of Ap

    A 60 pc counter-rotating core in NGC 4621

    Full text link
    We present adaptive optics assisted OASIS integral field spectrography of the S0 galaxy NGC 4621. Two-dimensional stellar kinematical maps (mean velocity and dispersion) reveal the presence of a 60 pc diameter counter-rotating core (CRC), the smallest observed to date. The OASIS data also suggests that the kinematic center of the CRC is slightly offset from the center of the outer isophotes. This seems to be confirmed by archival HST/STIS data. We also present the HST/WFPC2 V-I colour map, which exhibits a central elongated red structure, also slightly off-centered in the same direction as the kinematic centre. We then construct an axisymmetric model of NGC 4621: the two-integral distribution function is derived using the Multi-Gaussian Expansion and the Hunter & Qian (1993) formalisms. Although the stellar velocities are reasonably fitted, including the region of the counter-rotating core, significant discrepancies between the model and the observations demonstrate the need for a more general model (e.g. a three-integral model).Comment: 9 pages, 8 figure

    Deep Near Infrared Mapping of Young and Old Stars in Blue Compact Dwarf Galaxies

    Full text link
    We analyze J, H and Ks near-infrared data for 9 Blue Compact Dwarf (BCD) galaxies, selected from a larger sample that we have already studied in the optical. We present contour maps, surface brightness and color profiles, as well as color maps of the sample galaxies. The morphology of the BCDs in the NIR has been found to be basically the same as in the optical. The inner regions of these systems are dominated by the starburst component. At low surface brightness levels the emission is due to the underlying host galaxy; the latter is characterized by red, radially constant colors and isophotes well fit by ellipses. We derive accurate optical near--infrared host galaxy colors for eight of the sample galaxies; these colors are typical of an evolved stellar population. Interestingly, optical near--infrared color maps reveal the presence of a complex, large-scale absorption pattern in three of the sample galaxies. We study the applicability of the Sersic law to describe the surface brightness profiles of the underlying host galaxy, and find that, because of the limited surface brightness interval over which the fit can be made, the derived Sersic parameters are very sensitive to the selected radial interval and to errors in the sky subtraction. Fitting an exponential model gives generally more stable results, and can provide a useful tool to quantify the structural properties of the host galaxy and compare them with those of other dwarf classes as well as with those of star-forming dwarfs at higher redshifts.Comment: 49 pages, 9 figures, 10 tables, accepted for publication in the Astrophysical Journa

    Minor-axis velocity gradients in disk galaxies

    Full text link
    We present the ionized-gas kinematics and photometry of a sample of 4 spiral galaxies which are characterized by a zero-velocity plateau along the major axis and a velocity gradient along the minor axis, respectively. By combining these new kinematical data with those available in the literature for the ionized-gas component of the S0s and spirals listed in the Revised Shapley-Ames Catalog of Bright Galaxies we realized that about 50% of unbarred galaxies show a remarkable gas velocity gradient along the optical minor axis. This fraction rises to about 60% if we include unbarred galaxies with an irregular velocity profile along the minor axis. This phenomenon is observed all along the Hubble sequence of disk galaxies, and it is particularly frequent in early-type spirals. Since minor-axis velocity gradients are unexpected if the gas is moving onto circular orbits in a disk coplanar to the stellar one, we conclude that non-circular and off-plane gas motions are not rare in the inner regions of disk galaxies.Comment: 12 pages, 4 postscript figures. Accepted for publication in A&
    corecore