184 research outputs found

    Undergraduate Education for the 21st Century : What can we learn from graduates?

    Full text link

    Biochemical analyses of lipids deposited on silicone hydrogel lenses

    Get PDF
    AbstractPurposeThis study was performed to determine the levels of lipids deposited on in vivo worn silicone hydrogel lenses.MethodsThree silicone hydrogel materials, galyfilcon A, senofilcon A, and asmofilcon A, were worn for 2 weeks by 35 normal subjects. Total lipid deposition was determined by the sulfo-phospho-vanillin reaction. Cholesterol was estimated by a colorimetric probe through enzymatic oxidation. Phospholipid level was estimated by determining phosphorus with ammonium molybdate through enzymatic digestion.ResultsThe total lipid content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 32.9 ± 33.8, 42.1 ± 14.0, and 36.6 ± 31.9 μg/lens, respectively. The cholesterol content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 26.2 ± 26.9, 28.6 ± 19.4, and 31.1 ± 21.1 μg/lens, respectively. There were no statistically significant differences in total lipids and cholesterol among the contact lens types. However, the quantity of phospholipid recovered from the asmofilcon A (7.0 ± 5.5 μg/lens) lenses was significantly higher than from galyfilcon A (1.1 ± 0.8 μg/lens) and senofilcon A (2.4 ± 0.8 mg/lens) lenses (p < 0.05, Mann-Whitney test).ConclusionsThe quantity of total lipid and cholesterol deposited on the 3 silicone hydrogel lenses tested did not differ. However, there were significant differences in the amounts of phospholipid deposited among the 3 silicone hydrogel lenses, of which clinical significance should be explored in the future study

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells

    Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43

    Get PDF
    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and phosphorylation of transactive response deoxyribonucleic acid-binding protein 43 occurred after degeneration had begun. In contrast, similarly prepared rat models expressed transactive response deoxyribonucleic acid-binding protein 43 only in the nucleus of motoneurons. There is thus a species difference in transactive response deoxyribonucleic acid-binding protein 43 pathology, and our monkey model recapitulates amyotrophic lateral sclerosis pathology to a greater extent than rodent models, providing a valuable tool for studying the pathogenesis of sporadic amyotrophic lateral sclerosis
    corecore