86 research outputs found

    Effective cardiac resynchronization therapy for an adolescent patient with dilated cardiomyopathy seven years after mitral valve replacement and septal anterior ventricular exclusion

    Get PDF
    Cardiac resynchronization therapy (CRT) is a new treatment for refractory heart failure. However, most heart failure patients treated with CRT are middle-aged or old patients with idiopathic or ischemic dilated cardiomyopathy. We treated a 17 year 11 month old girl with dilated cardiomyopathy after mitral valve replacement (MVR) and septal anterior ventricular exclusion (SAVE). Seven years after the SAVE procedure, she presented complaining of palpitations and general fatigue with normal activity. Her echocardiogram showed reduced left ventricular function. Despite of optimal medical therapy, her left ventricular function continued to decline and she experienced regular arrhythmias such as premature ventricular contractions. We thus elected to perform cardiac resynchronization therapy with defibrillator (CRT-D). After CRT-D, her clinical symptoms improved dramatically and left ventricular ejection fraction (LVEF) improved from 31.2% to 51.3% as assessed by echocardiogram. Serum BNP levels decreased from 448.2 to 213.6 pg/ml. On ECG, arrhythmias were remarkably reduced and QRS duration was shortened from 174 to 152 msec. In conclusion, CRT-D is an effective therapeutic option for adolescent patients with refractory heart failure after left ventricular volume reduction surgery

    A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps

    Get PDF
    BACKGROUND: Molecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps. RESULTS: A total of 110,592 maize BAC clones (~ 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize [1,2]. CONCLUSION: This BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information

    Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management

    Get PDF
    Atrioventricular block is classified as congeni- tal if diagnosed in utero, at birth, or within the first month of life. The pathophysiological process is believed to be due to immune-mediated injury of the conduction system, which occurs as a result of transplacental pas- sage of maternal anti-SSA/Ro-SSB/La antibodies. Childhood atrioventricular block is therefore diagnosed between the first month and the 18th year of life. Genetic variants in multiple genes have been described to date in the pathogenesis of inherited progressive car- diac conduction disorders. Indications and techniques of cardiac pacing have also evolved to allow safe perma- nent cardiac pacing in almost all patients, including those with structural heart abnormalities

    Exercise capacity in children with isolated congenital complete atrioventricular block: does pacing make a difference?

    Get PDF
    Item does not contain fulltextThe management of patients with isolated congenital complete atrioventricular block (CCAVB) has changed during the last decades. The current policy is to pace the majority of patients based on a variety of criteria, among which is limited exercise capacity. Data regarding exercise capacity in this population stems from previous publications reporting small case series of unpaced patients. Therefore, we have investigated the exercise capacity of a group of contemporary children with CCAVB. Sixteen children (mean age 11.5 +/- 4; seven boys, nine girls) with CCAVB were tested. In 13 patients, a median number of three pacemakers were implanted, whereas in three patients no pacemaker was given. All patients had an echocardiogram and completed a cardiopulmonary cycle exercise test. Exercise parameters were determined and compared with reference values obtained from healthy Dutch peers. The peak oxygen uptake/body mass was reduced to 34.4 +/- 9.5 ml kg(-1) min(-1) (79 +/- 24% of predicted) and the ventilatory threshold was reduced to 52 +/- 17% of peak oxygen uptake (78 +/- 21% of predicted), whereas the peak work load/body mass was 2.8 +/- 0.6 W/kg (91 +/- 24% of predicted), which was similar to controls. Importantly, 25% of the paced patients showed upper rate restriction by the pacemaker. In conclusion, children with CCAVB show a reduced peak oxygen uptake and ventilatory threshold, whereas they show normal peak work rates. This indicates that they generate more energy during exercise from anaerobic energy sources. Paced children with CCAVB do not perform better than unpaced children.1 april 201

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    Hypertrophic cardiomyopathy in children

    No full text
    Hypertrophic cardiomyopathy (HCM) is the second commonest form of heart muscle disease affecting children and adolescents and is a leading cause of sudden death in young athletes. The aetiology of HCM is heterogeneous in the paediatric population, and includes inborn errors of metabolism, neuromuscular disorders and malformation syndromes. However, most cases of apparently idiopathic HCM in childhood are caused by mutations in cardiac sarcomere protein genes. Patients with metabolic or syndromic HCM usually present in infancy or early childhood, whereas those with neuromuscular disorders are more frequently diagnosed in adolescence. The diagnosis of HCM in infants is often made during evaluation for a heart murmur or congestive heart failure. Older children are usually referred for evaluation of symptoms, electrocardiographic abnormalities or heart murmur, or for family screening following the diagnosis of HCM in a relative. Risk stratification in the paediatric population remains a challenge. As most cases of HCM are familial, evaluation of first-degree relatives and other family members at risk of inheriting the disease should be a routine component of clinical management

    Acute complications of electrophysiology and pacing procedures: Identification and management

    No full text
    Non-pharmacologic interventional techniques for treatment and management of almost all cardiac arrhythmias have greatly expanded over the past decade. These newer interventional electrophysiologic techniques continue to demonstrate increasing success at achieving their targeted goals, and enhancing the patient\u27s quality of life. However, like all interventional procedures, complications may result. In this article we provide the reader with an overview of the more common and significant adverse events that may follow electrophysiologic and pacing procedures, and how best to recognize and manage these complications. After providing the reader with an overview of the complications inherent to all electrophysiologic procedures, we will detail the adverse events intrinsic to specific therapeutic electrophysiologic interventions (DC cardioversion, pharmacologic-based cardioversion, antitachycardia pacing, and ablation of specific arrhythmias). In the last part of the review, we will delineate complications associated with pacing procedures (pacemaker and defibrillator implantation, biventricular pacing and pacing lead extraction)
    corecore