57 research outputs found

    Raising the Gangdese Mountains in southern Tibet

    Get PDF
    This research was financially supported by the MOST of China (No. 2016YFC0600304 and No. 2016YFC0600407), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03010301), the National Science Foundation of China (41225006 and 41472061), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (China University of Geosciences).The surface uplift of mountain belts is in large part controlled by the effects of crustal thickening and mantle dynamic processes (e.g., lithospheric delamination or slab breakoff). Understanding the history and driving mechanism of uplift of the southern Tibetan Plateau requires accurate knowledge on crustal thickening over time. Here we determine spatial and temporal variations in crustal thickness using whole-rock La/Yb ratios of intermediate intrusive rocks from the Gangdese arc. Our results show that the crust was likely of normal thickness prior to ca. 70 Ma (~37 km) but began to thicken locally at ca. 70 − 60 Ma. The crust reached (58 − 50) ± 10 km at 55 − 45 Ma extending over 400 km along the strike of the arc. This thickening was likely due to magmatic underplating as a consequence of rollback and then breakoff of the subducting Neo-Tethyan slab. The crust attained a thickness of 68 ± 12 km at ca. 20 − 10 Ma, as a consequence of underthrusting of India and associated thrust faulting. The Gangdese Mountains in southern Tibet broadly attained an elevation of >4000 m at ca. 55 − 45 Ma as a result of isostatic surface uplift driven by crustal thickening and slab breakoff, and reached their present-day elevation by 20 − 10 Ma. Our paleoelevation estimates are consistent not only with the C − O isotope-based paleoaltimetry but also with the carbonate clumped isotope paleothermometer, exemplifying the promise of reconstructing paleoelevation in time and space for ancient orogens through a combination of magmatic composition and Airy isostatic compensation.Publisher PDFPeer reviewe

    Early Cenozoic partial melting of meta-sedimentary rocks of the eastern Gangdese arc, southern Tibet, and its contribution to syn-collisional magmatism

    Get PDF
    Continental magmatic arcs are characterized by the accretion of voluminous mantle-derived magmatic rocks and the growth of juvenile crust. However, significant volumes of meta-sedimentary rocks occur in the middle and lower arc crust, and the contributions of these rocks to the evolution of arc crust remain unclear. In this paper, we conduct a systematic study of petrology, geochronology, and geochemistry of migmatitic paragneisses from the eastern Gangdese magmatic arc, southern Tibet. The results show that the paragneisses were derived from late Carboniferous greywacke, and underwent an early Cenozoic (69–41 Ma) upper amphibolite-facies metamorphism and partial melting at pressure-temperature conditions of ~11 kbar and ~740 °C, and generated granitic melts with enriched Hf isotopic compositions (anatectic zircon εHf(t) = −10.57 to +0.78). Combined with the existing results, we conclude that the widely distributed meta-sedimentary rocks in the eastern Gangdese arc deep crust have the same protolith ages of late Carboniferous, and record northwestward-decreasing metamorphic conditions. We consider that the deeply buried sedimentary rocks resulted in the compositional change of juvenile lower crust from mafic to felsic and the formation of syn-collisional S-type granitoids. The mixing of melts derived from mantle, juvenile lower crust, and ancient crustal materials resulted in the isotopic enrichment of the syn-collisional arc-type magmatic rocks of the Gangdese arc. We suggest that crustal shortening and underthrusting, and the accretion of mantle-derived magma during the Indo-Asian collision transported the supracrustal rocks to the deep crust of the Gangdese arc

    Magmatic record of India-Asia collision

    Get PDF
    This work was financially co-supported by Chinese Academy of Sciences (XDB03010301) and other Chinese funding agencies (Project 973: 2011CB403102 and 2015CB452604; NSFC projects: 41225006, 41273044, and 41472061).New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.Publisher PDFPeer reviewe

    Experimental study on the nucleate boiling heat transfer characteristics of a water-based multi-walled carbon nanotubes nanofluid in a confined space

    Get PDF
    Experimental investigation of nucleate boiling heat transfer of a water-based multi-walled carbon nanotubes (MWCNTs) nanofluid in a confined space is presented in this study. First, the effects of four different surfactants on the stability of the nanofluids were investigated and the suitable surfactant gum acacia (GA) was selected for the boiling experiments. Then, the boiling experiments of the nanofluids with various volume fractions (0.005–0.2%) of the MWCNTs were conducted at a sub-atmospheric pressure of 1 × 10−3 Pa and the test heat fluxes are from 100 to 740 kW/m2. Furthermore, GA with four different mass fractions was respectively dissolved in the nanofluids to investigate the effect of the GA concentration on the boiling heat transfer. The effects of the heat flux, the concentrations of the MWCNTs and surfactants, the bubble behaviors and the surface conditions after the boiling processes have been analyzed. The results show that the MWCNTs nanofluid can enhance boiling heat transfer as compared to the base fluid. This is mainly caused by the nanoparticles deposition on the boiling surface result in increasing the surface roughness and reducing surface contact angle. It is also found that addition of GA can inhibit the deposition of the nanoparticles but may reduce the boiling heat transfer coefficient of the nanofluids. According to the experimental results, the maximum heat transfer coefficient enhancement ratio can reach 40.53%. It is also noticed that the heat transfer enhancement ratio decreases with increasing the heat flux at lower heat fluxes from 100 to 340 kW/m2 while it increases with increasing the heat flux at higher fluxes from 340 to 740 kW/m2. At the lower heat fluxes, the deposition layer increases the frequency of bubble formation and thus the boiling heat transfer is strengthened. While at the high heat fluxes, the increasing heat flux may strengthen the capability of the nanoparticles deposition and the disturbance of the nanoparticles and increase the enhancement ratio of heat transfer coefficient

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore