8 research outputs found

    High-resolution bathymetries and shorelines for the Great Lakes of the White Nile basin

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License.HRBS-GLWNB 2020 presents the first open-source and high-resolution bathymetry, shoreline, and water level data for Lakes Victoria, Albert, Edward, and George in East Africa. For each Lake, these data have three primary products collected for this project. The bathymetric datasets were created from approximately 18 million acoustic soundings. Over 8,200 km of shorelines are delineated across the three lakes from high-resolution satellite systems and uncrewed aerial vehicles. Finally, these data are tied together by creating lake surface elevation models collected from GPS and altimeter measures. The data repository includes additional derived products, including surface areas, water volumes, shoreline lengths, lake elevation levels, and geodetic information. These data can be used to make allocation decisions regarding the freshwater resources within Africa, manage food resources on which many tens of millions of people rely, and help preserve the region’s endemic biodiversity. Finally, as these data are tied to globally consistent geodetic models, they can be used in future global and regional climate change models.ECU Open Access Publishing Support Fun

    Як уникнути підйому рівня води?

    Get PDF
    East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales

    Changes in the Diet of Synodontis victoriae and Synodontis afrofischeri in Lake Victoria, Tanzanian waters.

    No full text
    The diet of Synodontis victoriae and S.afrofischeri was investigated from samples collected for stomach analysis in May 2013, October 2013, and April 2014 in the Tanzanian waters of Lake Victoria. The diet of S. victoriae was dominated by freshwater shrimps Caridina nilotica followed by unidentified fish remains, the cyprinids Rastrineobola argentea and Enteromius profundus as well as insects, molluscs, haplochromines and worms. The diet of S. afrofischeri was dominated by R. argentea followed by insects, fish remains, worms, molluscs, C. nilotica, algae and haplochromines. There was considerable variation in the diets of both species collected at different times and they displayed considerable plasticity in their diet. Both species exhibited a wider range of diet, utilizing food items that may not have been available before the changes in the lake that followed the Nile perch upsurge in the 1980s.Keywords: Caridina nilotica, Diet expansion, Food and Feeding habits, Rastrineobola argentea, Seasonal variatio

    Automated classification of schools of the silver cyprinid Rastrineobola argentea in Lake Victoria acoustic survey data using random forests

    Get PDF
    The dagaa classification reported here was supported specifically by several Scottish Funding Council Global Challenge Research Fund (GCRF) grants from the University of St Andrews and the University of Strathclyde, by a GCRF Networking Grant to ASB and RJK from the UK Academy of Medical Sciences (GCRFNG\100371), and a Royal Society International Collaboration Award to ASB and Rhoda Tumwebaze, LVFO (ICA\R1\180123).Biomass of the schooling fish Rastrineobola argentea (dagaa) is presently estimated in Lake Victoria by acoustic survey following the simple "rule" that dagaa is the source of most echo energy returned from the top third of the water column. Dagaa have, however, been caught in the bottom two-thirds, and other species occur towards the surface: a more robust discrimination technique is required. We explored the utility of a school-based random forest (RF) classifier applied to 120kHz data from a lake-wide survey. Dagaa schools were first identified manually using expert opinion informed by fishing. These schools contained a lake-wide biomass of 0.68 million tonnes (MT). Only 43.4% of identified dagaa schools occurred in the top third of the water column, and 37.3% of all schools in the bottom two-thirds were classified as dagaa. School metrics (e.g. length, echo energy) for 49081 manually classified dagaa and non-dagaa schools were used to build an RF school classifier. The best RF model had a classification test accuracy of 85.4%, driven largely by school length, and yielded a biomass of 0.71 MT, only c. 4% different from the manual estimate. The RF classifier offers an efficient method to generate a consistent dagaa biomass time series.Publisher PDFPeer reviewe

    Automated classification of schools of the silver cyprinid <i>Rastrineobola argentea</i> in Lake Victoria acoustic survey data using random forests

    No full text
    Biomass of the schooling fish Rastrineobola argentea (dagaa) is presently estimated in Lake Victoria by acoustic survey following the simple "rule" that dagaa is the source of most echo energy returned from the top third of the water column. Dagaa have, however, been caught in the bottom two-thirds, and other species occur towards the surface: a more robust discrimination technique is required. We explored the utility of a school-based random forest (RF) classifier applied to 120kHz data from a lake-wide survey. Dagaa schools were first identified manually using expert opinion informed by fishing. These schools contained a lake-wide biomass of 0.68 million tonnes (MT). Only 43.4% of identified dagaa schools occurred in the top third of the water column, and 37.3% of all schools in the bottom two-thirds were classified as dagaa. School metrics (e.g. length, echo energy) for 49081 manually classified dagaa and non-dagaa schools were used to build an RF school classifier. The best RF model had a classification test accuracy of 85.4%, driven largely by school length, and yielded a biomass of 0.71 MT, only c. 4% different from the manual estimate. The RF classifier offers an efficient method to generate a consistent dagaa biomass time series.</p
    corecore