1,455 research outputs found
Smooth quantum-classical transition in photon subtraction and addition processes
Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally
the photon subtraction and addition processes from/to a light field in a
conditional way, when the required operations were produced successfully only
upon the positive outcome of a separate measurement. It was verified that for a
low intensity beam (quantum regime) the bosonic annihilation operator does
indeed describe a single photon subtraction, while the creation operator
describes a photon addition. Nonetheless, the exact formal expressions for
these operations do not always reduce to these simple identifications, and in
this connection here we deduce the general superoperators for multiple photons
subtraction and addition processes and analyze the statistics of the resulting
states for classical field states having an arbitrary intensity. We obtain
closed analytical expressions and verify that for classical fields with high
intensity (classical regime) the operators that describe photon subtraction and
addition processes deviate significantly from simply annihilation and creation
operators. Complementarily, we analyze in details such a smooth
quantum-classical transition as function of beam intensity for both processes.Comment: 7 pages, 5 figures. To appear in Phys. Rev.
Generating Information-Diverse Microwave Speckle Patterns Inside a Room at a Single Frequency With a Dynamic Metasurface Aperture
We demonstrate that dynamic metasurface apertures (DMAs) are capable of generating a multitude of highly uncorrelated speckle patterns in a typical residential environment at a single frequency. We use a DMA implemented as an electrically-large cavity excited by a single port and loaded with many individually-addressable tunable metamaterial radiators. We placed such a DMA in one corner of a plywood-walled L-shape room transmitting microwave signals at 19 GHz as we changed the tuning states of the metamaterial radiators. In another corner, in the non-line-of-sight of the DMA, we conducted a scan of the field generated by the DMA. For comparison, we also performed a similar test where the DMA was replaced by a simple dipole antenna with fixed pattern but generating a signal that spanned 19-24 GHz. Using singular value decomposition of the scanned data, we demonstrate that the DMA can generate a multitude of highly uncorrelated speckle patterns at a single frequency. In contrast, a dipole antenna with a fixed pattern can only generate such a highly uncorrelated set of patterns when operating over a large bandwidth. The experimental results of this paper suggest that DMAs can be used to capture a diversity of information at a single frequency which can be used for single frequency computational imaging systems, NLOS motion detection, gesture recognition systems, and more
Timed Consistent Network Updates
Network updates such as policy and routing changes occur frequently in
Software Defined Networks (SDN). Updates should be performed consistently,
preventing temporary disruptions, and should require as little overhead as
possible. Scalability is increasingly becoming an essential requirement in SDN.
In this paper we propose to use time-triggered network updates to achieve
consistent updates. Our proposed solution requires lower overhead than existing
update approaches, without compromising the consistency during the update. We
demonstrate that accurate time enables far more scalable consistent updates in
SDN than previously available. In addition, it provides the SDN programmer with
fine-grained control over the tradeoff between consistency and scalability.Comment: This technical report is an extended version of the paper "Timed
Consistent Network Updates", which was accepted to the ACM SIGCOMM Symposium
on SDN Research (SOSR) '15, Santa Clara, CA, US, June 201
An Optimal Self-Stabilizing Firing Squad
Consider a fully connected network where up to processes may crash, and
all processes start in an arbitrary memory state. The self-stabilizing firing
squad problem consists of eventually guaranteeing simultaneous response to an
external input. This is modeled by requiring that the non-crashed processes
"fire" simultaneously if some correct process received an external "GO" input,
and that they only fire as a response to some process receiving such an input.
This paper presents FireAlg, the first self-stabilizing firing squad algorithm.
The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is
in a safe state, it fires in response to a GO input as fast as any other
algorithm does, and (b) Starting from an arbitrary state, it converges to a
safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0
Collisional Semiclassical Aproximations in Phase-Space Representation
The Gaussian Wave-Packet phase-space representation is used to show that the
expansion in powers of of the quantum Liouville propagator leads, in
the zeroth order term, to results close to those obtained in the statistical
quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also
verified that propagating the Wigner distribution along the classical
trajectories the amount of error is less than that coming from propagating the
Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include
Recommended from our members
Magnetic Properties and Interfacial Anisotropies of Pt/Co/AlO<inf>x</inf> Perpendicularly Magnetized Thin Films
The thin films of Pt/Co/AlOx, showing perpendicular magnetic anisotropy, were grown by magnetron sputtering with AlOx formed by the oxidation of thin Al layers using an oxygen atom source. Films were studied as a function of Pt thickness and Al oxidation, and films that showed full remanence and sharp switching coercivity were achieved. In order to prevent further oxidation of the interface in ambient conditions, we use a double Al growth and oxidation process. The magnetooptical Kerr effect and vibrating sample magnetometry were used to analyze these films. We find an effective perpendicular anisotropy of 2 × 106 erg/cm3, with the majority of the perpendicular anisotropy coming from the Pt/Co interface. From the sweep rate dependence on the coercivity, we are able to extract an activation volume of 4.3-0.5 × 10-18cm3, similar to other Co-based perpendicular systems.This research is funded by the European Community under the Seventh Framework Program ERC Contract No. 247368: 3SPIN. AB acknowledges DTA funding from the EPSRC
Optical bistability in sideband output modes induced by squeezed vacuum
We consider two-level atoms in a ring cavity interacting with a broadband
squeezed vacuum centered at frequency and an input monochromatic
driving field at frequency . We show that, besides the central mode
(at \o), many other {\em sideband modes} are produced at the output, with
frequencies shifted from by multiples of .
Here we analyze the optical bistability of the two nearest sideband modes, one
red-shifted and the other blue-shifted.Comment: Replaced with final published versio
Recommended from our members
Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs
Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.</p
Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis
Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis
- …