52 research outputs found

    Taking the pseudo out of pseudogenes

    Get PDF
    Pseudogenes are defined as fragments of once-functional genes that have been silenced by one or more nonsense, frameshift or missense mutations. Despite continuing increases in the speed of sequencing and annotating bacterial genomes, the identification and categorisation of pseudogenes remains problematic. Even when identified, pseudogenes are considered to be rare and tend to be ignored. On the contrary, pseudogenes are surprisingly prevalent and can persist for long evolutionary time periods, representing a record of once-functional genetic characteristics. Most importantly, pseudogenes provide an insight into prokaryotic evolutionary history as a record of phenotypic traits that have been lost. Focusing on the intracellular and symbiotic bacteria in which pseudogenes predominate, this review discusses the importance of identifying pseudogenes to fully understand the abilities of bacteria, and to understand prokaryotes within their evolutionary context

    Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies

    Get PDF
    Given the powerful implications of relationship quality for health and well-being, a central mission of relationship science is explaining why some romantic relationships thrive more than others. This large-scale project used machine learning (i.e., Random Forests) to 1) quantify the extent to which relationship quality is predictable and 2) identify which constructs reliably predict relationship quality. Across 43 dyadic longitudinal datasets from 29 laboratories, the top relationship-specific predictors of relationship quality were perceived-partner commitment, appreciation, sexual satisfaction, perceived-partner satisfaction, and conflict. The top individual-difference predictors were life satisfaction, negative affect, depression, attachment avoidance, and attachment anxiety. Overall, relationship-specific variables predicted up to 45% of variance at baseline, and up to 18% of variance at the end of each study. Individual differences also performed well (21% and 12%, respectively). Actor-reported variables (i.e., own relationship-specific and individual-difference variables) predicted two to four times more variance than partner-reported variables (i.e., the partner’s ratings on those variables). Importantly, individual differences and partner reports had no predictive effects beyond actor-reported relationship-specific variables alone. These findings imply that the sum of all individual differences and partner experiences exert their influence on relationship quality via a person’s own relationship-specific experiences, and effects due to moderation by individual differences and moderation by partner-reports may be quite small. Finally, relationship-quality change (i.e., increases or decreases in relationship quality over the course of a study) was largely unpredictable from any combination of self-report variables. This collective effort should guide future models of relationships

    Toxin-Based Therapeutic Approaches

    Get PDF
    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin

    Niche construction and the transition to herbivory: Phenotype switching and the organization of new nutritional modes

    Get PDF
    Gut microbiota have played important roles in the evolutionary transition from carnivory to herbivory. In the evolution of ruminants, three modes of macrobe-microbe symbiosis have facilitated the phenotypic switch into a new nutritional mode. Mutualistic microbes acquired during birth enable the building of the rumen (developmental symbiosis), the digestion of plant fiber (nutritional symbiosis), and the detoxification of plant toxins (protective symbiosis). These symbioses created a new plant dietary niche through two types of niche construction: “perturbational niche construction,” a phenotypic process whereby gut microbes initiate the building of a mature rumen from the non-functional anlagen of this stomach region; and “mediational niche construction,” whereby microbe-induced changes alter how the animal experiences environmental resources without actual modification of the environment. Thanks to microbes, plants are now edible. We argue that the reciprocal niche construction of the host and its associated microbial organisms (i.e. the “holobiont”) scaffold each other’s developmental and phenotypic processes as well as organize a new selective environment of the holobiont as a whole

    NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Get PDF
    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies

    When Insecurity Dampens Desire

    No full text
    These two datasets include longitudinal dyadic data of emerging romantic couples. Data were analyzed using multilevel modeling, and the attached files are structured as level 1
    corecore